Ex 1.3 , 4
Last updated at May 29, 2018 by Teachoo
Last updated at May 29, 2018 by Teachoo
Transcript
Ex1.3 , 4 If 𝑓(𝑥)=(4𝑥 − 3)6𝑥 − 4, 𝑥 ≠ 23 , show that 𝑓𝑜𝑓(𝑥)=𝑥, for all 𝑥 ≠ 23 . What is the inverse of f? 𝑓(𝑥)=(4𝑥 − 3)6𝑥 − 4 𝑓(𝑓𝑥) = 4𝑓(𝑥) − 36𝑓(𝑥) − 4 𝑓𝑜𝑓𝑥 = 44𝑥 − 36𝑥 − 4 − 364𝑥 − 36𝑥 − 4 − 4 = 44𝑥 − 3 − 36𝑥 − 46𝑥 − 464𝑥 − 3 − 46𝑥 − 46𝑥 − 4 = 16𝑥 − 12 − 18𝑥 +126𝑥 − 424𝑥 − 18 − 24𝑥 +166𝑥 − 4 = 16𝑥 − 12 − 18𝑥 +126𝑥 − 4 × 6𝑥 − 424𝑥 − 18 − 24𝑥 + 16 = 16𝑥 − 12 − 18𝑥 +1224𝑥 −18 −24𝑥 +16 = −2𝑥 + 00 − 2 = −2𝑥− 2 = x ∴ 𝑓𝑜𝑓𝑥 = x Calculating inverse of f(x) 𝑓(𝑥)=(4𝑥 − 3)6𝑥 − 4 Put f(x) = y y = (4𝑥 − 3)6𝑥 − 4 y(6x – 4) = (4x – 3) 6xy – 4y = 4x – 3 6xy – 4x = 4y – 3 x(6y – 4) = 4y – 3 x = 4𝑦 − 36𝑦 − 4 So, inverse of f = 4𝑦 − 36𝑦 − 4 ∴ Let inverse of f = g (y) = 4𝑦 − 36𝑦 − 4 g (y) = 4𝑦 − 36𝑦 − 4 Replacing y with x g (x) = 4𝑥 − 36𝑥 − 4 = f(x) Hence we can say inverse of f is f itself i.e. f -1 = f
Ex 1.3
Ex 1.3, 2 Deleted for CBSE Board 2021 Exams only
Ex 1.3, 3 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 4 Deleted for CBSE Board 2021 Exams only You are here
Ex 1.3, 5 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 6 Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 7 Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 8 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 9 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3, 10 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3, 11 Deleted for CBSE Board 2021 Exams only
Ex 1.3, 12 Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 13 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3 , 14 Important Deleted for CBSE Board 2021 Exams only
Ex 1.3
About the Author