
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Inverse of a function
Ex 1.3, 2 Deleted for CBSE Board 2024 Exams
Ex 1.3, 3 (i) Important Deleted for CBSE Board 2024 Exams
Ex 1.3, 3 (ii) Deleted for CBSE Board 2024 Exams
Ex 1.3 , 4 Deleted for CBSE Board 2024 Exams
Ex 1.3, 5 (i) Deleted for CBSE Board 2024 Exams
Ex 1.3, 5 (ii) Important Deleted for CBSE Board 2024 Exams
Ex 1.3, 5 (iii) Important Deleted for CBSE Board 2024 Exams You are here
Ex 1.3 , 6 Deleted for CBSE Board 2024 Exams
Ex 1.3 , 7 Deleted for CBSE Board 2024 Exams
Ex 1.3 , 8 Important Deleted for CBSE Board 2024 Exams
Ex 1.3 , 9 Important Deleted for CBSE Board 2024 Exams
Ex 1.3, 10 Important Deleted for CBSE Board 2024 Exams
Ex 1.3, 11 Deleted for CBSE Board 2024 Exams
Ex 1.3, 12 Deleted for CBSE Board 2024 Exams
Ex 1.3, 13 (MCQ) Important Deleted for CBSE Board 2024 Exams
Ex 1.3, 14 (MCQ) Important Deleted for CBSE Board 2024 Exams
Inverse of a function
Last updated at May 29, 2023 by Teachoo
Ex 1.3, 5 State with reason whether following functions have inverse (iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)} A function has inverse if it is one-one and onto Check one one h = {(2, 7), (3, 9), (4, 11), (5, 13)} Since each element has unique image, h is one-one Check onto Since for every image, there is a corresponding element, ∴ h is onto. Since function is both one-one and onto it will have inverse h = {(2, 7), (3, 9), (4, 11), (5, 13)} h-1 = {(7, 2), (9, 3), (11, 4), (13, 5)}