Β
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 5 Class 12 Continuity and Differentiability
Ex 5.1, 13
Ex 5.1, 16
Ex 5.1, 18 Important
Ex 5.1, 28 Important
Ex 5.1, 30 Important
Ex 5.1, 34 Important
Ex 5.2, 5
Ex 5.2, 9 Important
Ex 5.2, 10 Important
Ex 5.3, 10 Important
Ex 5.3, 14
Example 29 Important
Example 30 Important
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 11 Important
Ex 5.5, 16 Important
Ex 5.6, 7 Important
Ex 5.6, 11 Important
Example 38 Important
Ex 5.7, 14 Important
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Example 39 (i)
Example 40 (i)
Example 42 Important You are here
Misc 6 Important
Misc 15 Important
Misc 16 Important
Misc 22 Important
Chapter 5 Class 12 Continuity and Differentiability
Last updated at June 2, 2023 by Teachoo
Example 42 For a positive constant a find ππ¦/ππ₯ , where π¦ = π^(π‘+1/π‘) , and π₯ =(π‘+1/π‘)^2 Here π π/π π = (π π/π π)/(π π/π π) Calculating π π/π π π¦=π^(π‘ + 1/π‘) Differentiating π€.π.π‘. t π π/π π = π (π^((π + π/π) ) )/π π ππ¦/ππ‘ = π^((π‘ + 1/π‘) ) .logβ‘π.π(π‘ + 1/π‘)/ππ‘ ππ¦/ππ‘ = π^((π‘ + 1/π‘) ) .logβ‘π.(1+(β1) π‘^(β2) ) π π/π π = π^((π + π/π) ) .πππβ‘π.(πβπ/π^π ) "As " π(π^π₯ )/ππ₯ " = " π^π₯.πππβ‘π Calculating π π/π π π₯=(π‘+1/π‘)^π Differentiating π€.π.π‘. t ππ₯/ππ‘ = π((π‘ + 1/π‘)^(π ) )/ππ‘ ππ₯/ππ‘ = a (π‘+1/π‘)^(π β1 ) . π(π‘ + 1/π‘)/ππ‘ ππ₯/ππ‘ = a (π‘+1/π‘)^(π β1 ) . (π(π‘)/ππ‘ + π(1/π‘)/ππ‘) ππ₯/ππ‘ = a (π‘+1/π‘)^(π β1 ) . (1+ π(π‘^(β1) )/ππ‘) ππ₯/ππ‘ = a π^(π β1 ) . π(π)/ππ‘ ππ₯/ππ‘ = a (π‘+1/π‘)^(π β1 ) . (1+(β1) γ π‘γ^(β2) ) ππ₯/ππ‘ = a (π‘+1/π‘)^(π β1 ) . (1β 1/π‘^2 ) Calculating π π/π π ππ¦/ππ₯ = (ππ¦/ππ‘)/(ππ₯/ππ‘) ππ¦/ππ₯ = (π^(π‘ + 1/π‘) . logβ‘γπ γ Γ (1 β 1/π‘^2 ))/(π(π‘ + 1/π‘)^(π β 1) (1 β 1/π‘^2 ).) π π/π π = (π^(π + π/π) . πππβ‘γπ γ)/(π(π + π/π)^(π β π) )