

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Chapter 5 Class 12 Continuity and Differentiability
Ex 5.1, 13
Ex 5.1, 16
Ex 5.1, 18 Important
Ex 5.1, 28 Important
Ex 5.1, 30 Important
Ex 5.1, 34 Important
Ex 5.2, 5
Ex 5.2, 9 Important
Ex 5.2, 10 Important
Ex 5.3, 10 Important
Ex 5.3, 14
Example 29 Important
Example 30 Important
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 11 Important
Ex 5.5, 16 Important
Ex 5.6, 7 Important
Ex 5.6, 11 Important
Example 38 Important
Ex 5.7, 14 Important You are here
Question 4 Important Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Example 39 (i)
Example 40 (i)
Example 42 Important
Misc 6 Important
Misc 15 Important
Misc 16 Important
Misc 22 Important
Chapter 5 Class 12 Continuity and Differentiability
Last updated at May 29, 2023 by Teachoo
Ex 5.7, 14 If π¦= γAπγ^ππ₯ + γBπγ^ππ₯, show that π2π¦/ππ₯2 β (π+π) ππ¦/ππ₯ + πππ¦ = 0 π¦= γAπγ^ππ₯ + γBπγ^ππ₯ Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = (π(γAπγ^ππ₯ " + " γBπγ^ππ₯))/ππ₯ ππ¦/ππ₯ = (π(γAπγ^ππ₯))/ππ₯ + (π(γBπγ^ππ₯))/ππ₯ ππ¦/ππ₯ = A . π^ππ₯. (π(ππ₯))/ππ₯ + B . π^ππ₯ (π(ππ₯))/ππ₯ ππ¦/ππ₯ = A . π^ππ₯. π + B . π^ππ₯. π ππ¦/ππ₯ = π΄ππ^ππ₯ + π΅ππ^ππ₯ Again Differentiating π€.π.π‘.π₯ π/ππ₯ (ππ¦/ππ₯) = π(π΄ππ^ππ₯ " + " π΅ππ^ππ₯ " " )" " /ππ₯ (π^2 π¦)/(ππ₯^2 ) = π(π΄ππ^ππ₯ )/ππ₯ + π(π΅ππ^ππ₯ )" " /ππ₯ (π^2 π¦)/(ππ₯^2 ) = π΄π π(π^ππ₯ )/ππ₯ + π΅π π(π^ππ₯ )" " /ππ₯ (π^2 π¦)/(ππ₯^2 ) = π΄π . π^(ππ₯ ). π(ππ₯ )/ππ₯ + π΅π . π^ππ₯ . π(ππ₯)/ππ₯ (π^2 π¦)/(ππ₯^2 ) = π΄ππ^(ππ₯ ) . π+π΅ππ^ππ₯ . π (π^2 π¦)/(ππ₯^2 ) = π΄π2π^(ππ₯ )+π΅π2π^ππ₯ We need to prove (π^2 π¦)/(ππ₯^2 ) β (π+π) ππ¦/ππ₯ + πππ¦ = 0 Solving LHS (π^2 π¦)/(ππ₯^2 ) β (π+π) ππ¦/ππ₯ + πππ¦ = (π΄π2π^(ππ₯ )+π΅π2π^ππ₯) β (π+π) (π΄ππ^(ππ₯ )+π΅ππ^ππ₯) + ππ (π΄π^(ππ₯ )+π΅π^ππ₯) = π΄π2π^(ππ₯ )+π΅π2π^ππ₯ β π(π΄ππ^(ππ₯ )+π΅ππ^ππ₯) β π(π΄ππ^(ππ₯ )+π΅ππ^ππ₯) + ππ π΄π^(ππ₯ )+πππ΅π^ππ₯ = π΄π2π^(ππ₯ )+π΅π2π^ππ₯ βπ΄π2π^(ππ₯ )β π΅πππ^ππ₯ β π΄πππ^(ππ₯ ) + π΅π2π^ππ₯+ ππ π΄π^(ππ₯ )+πππ΅π^ππ₯ = π΄π2π^(ππ₯ )β π΄π2π^(ππ₯ ) + π΅π2π^ππ₯ βπ΅π2π^ππ₯ β π΅πππ^ππ₯ + π΅πππ^ππ₯ β π΄πππ^(ππ₯ ) + π΄πππ^(ππ₯ ) = 0 = RHS Hence proved