Slide16.JPG

Slide17.JPG


Transcript

Example 29 Differentiate π‘₯^sin⁑π‘₯ , π‘₯ > 0 𝑀.π‘Ÿ.𝑑. π‘₯.Let y = π‘₯^sin⁑π‘₯ Taking log both sides log⁑𝑦 = log π‘₯^sin⁑π‘₯ π’π’π’ˆβ‘π’š = π’”π’Šπ’β‘π’™ . π’π’π’ˆ 𝒙 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑(log⁑〖𝑦)γ€—)/𝑑π‘₯ = 𝑑/𝑑π‘₯ (sin⁑〖π‘₯ log⁑π‘₯ γ€— ) By product Rule (uv)’ = u’v + v’u where u = sin x & v = log x (𝑑(log⁑〖𝑦)γ€—)/𝑑π‘₯ = (𝑑(sin⁑π‘₯))/𝑑π‘₯.log π‘₯+sin π‘₯ . (𝑑(log⁑π‘₯))/𝑑π‘₯ (𝑑(log⁑〖𝑦)γ€—)/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯ = cos⁑π‘₯ log⁑π‘₯ + sin⁑π‘₯ 1/π‘₯ 𝑑𝑦/𝑑π‘₯ 1/𝑦 = 𝒄𝒐𝒔 π’™β‘π’π’π’ˆβ‘π’™ + π’”π’Šπ’β‘π’™ 𝟏/𝒙 𝑑𝑦/𝑑π‘₯ = 𝑦 (γ€–π‘π‘œπ‘  π‘₯γ€—β‘γ€–π‘™π‘œπ‘”β‘γ€–π‘₯+1/π‘₯γ€— 𝑠𝑖𝑛⁑π‘₯ γ€— ) Putting back 𝑦 = π‘₯^𝑠𝑖𝑛⁑π‘₯ 𝑑𝑦/𝑑π‘₯ = π‘₯^𝑠𝑖𝑛⁑π‘₯ (cos⁑〖log⁑〖π‘₯+ 1/π‘₯γ€— sin⁑π‘₯ γ€— ) = π‘₯^𝑠𝑖𝑛⁑π‘₯ cos⁑log⁑π‘₯ + π‘₯^𝑠𝑖𝑛⁑π‘₯ 1/π‘₯ 𝑠𝑖𝑛⁑π‘₯ = π‘₯^𝑠𝑖𝑛⁑π‘₯ cos⁑log⁑π‘₯ + π‘₯^𝑠𝑖𝑛⁑π‘₯ π‘₯^(βˆ’1) sin⁑π‘₯ = 𝒙^π’”π’Šπ’β‘π’™ π’„π’π’”β‘π’π’π’ˆβ‘π’™ + 𝒙^π’”π’Šπ’β‘γ€–π’™ βˆ’ πŸγ€— π’”π’Šπ’β‘π’™

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.