Example 38 - Chapter 5 Class 12 Continuity and Differentiability (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Something went wrong!
The
video
couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.
Thanks for bearing with us!
Something went wrong!
The
video
couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.
Thanks for bearing with us!
Transcript
Example 38 (Method 1) If y = ćš ššć^(ā1) š„, show that (1 ā š„2) š2š¦/šš„2 ā š„ šš¦/šš„ = 0 .
We have
š¦ = ćš ššć^(ā1) š„
Differentiating š¤.š.š”.š„
šš¦/šš„ = š(ćš ššć^(ā1) š„)/šš„
šš¦/šš„ = 1/ā(ć1 ā š„ć^2 )
ā((šāš^š ) ) š^ā² = š
Squaring both sides
("As " š(ćš ššć^(ā1) š„)/šš„ " = " 1/ā(ć1 ā š„ć^2 ))
(ā((1āš„^2 ) ) š¦^ā² )^2 = 1^2
(1āš„^2 )(š¦^ā² )^2 = 1
Again Differentiating š¤.š.š”.š„
š/šš„ ((1āš„^2 )(š¦^ā² )^2 ) = (š(1))/šš„
d(1 ā x^2 )/šš„ (š¦^ā² )^2+(1āš„^2 ) š((š¦^ā² )^2 )/šš„ = 0
ā2š„(š¦^ā² )^2+(1āš„^2 ) 2š¦^ā² Ć š¦^ā²ā² = 0
ć2yć^ā² [āšš^ā²+(šāš^š ) š^ā²ā² ] = 0
āš„š¦^ā²+(1āš„^2 ) š¦^ā²ā²=0
(ćšāšć^š ) (š
^š š)/ćš
šć^š ā š . š
š/š
š = 0
Example 38 (Method 2) If y = ćš ššć^(ā1) š„, show that (1 ā š„2) š2š¦/šš„2 ā š„ šš¦/šš„ = 0 . We have
š¦ = ćš ššć^(ā1) š„
Differentiating š¤.š.š”.š„
šš¦/šš„ = š(ćš ššć^(ā1) š„)/šš„
šš¦/šš„ = 1/ā(ć1 ā š„ć^2 )
š
š/š
š = (ćšāšć^š )^((āš)/( š))
("As " š(ćš ššć^(ā1) š„)/šš„ " = " 1/ā(ć1 ā š„ć^2 ))
Again Differentiating š¤.š.š”.š„
š/šš„ (šš¦/šš„) = (š(ć1 ā š„ć^2 )^((ā1)/( 2)))/šš„
(š^2 š¦)/ćšš„ć^2 = (ā1)/( 2) (ć1āš„ć^2 )^((ā1)/( 2) ā1) . š(ć1 ā š„ć^2 )/šš„
(š^2 š¦)/ćšš„ć^2 = (ā1)/( 2) (ć1āš„ć^2 )^((ā3)/2 ). (0ā2š„)
(š^2 š¦)/ćšš„ć^2 = (ā1)/( 2) (ć1āš„ć^2 )^((ā3)/2 ). (ā2š„)
(š
^š š)/ćš
šć^š = š(ćšāšć^š )^((āš)/š )
Now,
We need to prove
(ć1āš„ć^2 ) (š^2 š¦)/ćšš„ć^2 ā š„ . šš¦/šš„ = 0
Solving LHS
(ć1āš„ć^2 ) (š^2 š¦)/ćšš„ć^2 ā š„ . šš¦/šš„
= (ć1āš„ć^2 ) . (š„ć (ć1āš„ć^2 )ć^((ā3)/2 ) ) ā š„ (ć1āš„ć^2 )^((ā1)/( 2))
= š„ć (ć1āš„ć^2 )ć^(š + ((āš)/š) )āš„ (ć1āš„ć^2 )^((ā1)/( 2))
= š„ć (ć1āš„ć^2 )ć^((ā1)/( 2))āš„ (ć1āš„ć^2 )^((ā1)/( 2))
= 0
= RHS
Hence proved
Show More