1. Class 12
2. Important Question for exams Class 12

Transcript

Misc 23 If π¦=π^(γπ πππ γ^(β1) π₯) , β 1 β€ π₯ β€ 1, show that (1βπ₯^2 ) (π^2 π¦)/γππ₯γ^2 β π₯ ππ¦/ππ₯ βπ2 π¦ 0 . π¦=π^(γπ πππ γ^(β1) π₯) Let γπ πππ γ^(β1) π₯=π‘ π¦=π^π‘ Differentiating π€.π.π‘.π₯. ππ¦/ππ₯ = π(π^π‘ )/ππ₯ ππ¦/ππ₯ = π(π^π‘ )/ππ₯ Γ ππ‘/ππ‘ ππ¦/ππ₯ = π(π^π‘ )/ππ‘ Γ ππ‘/ππ₯ ππ¦/ππ₯ = π^π‘ Γ ππ‘/ππ₯ Putting value of π‘=γπ πππ γ^(β1) π₯ ππ¦/ππ₯ = π^(γπ πππ γ^(β1) π₯" " ) Γ π(γπ πππ γ^(β1) π₯)/ππ₯ ππ¦/ππ₯ = π^(γπ πππ γ^(β1) π₯" " ) Γ π π(γπππ γ^(β1) π₯)/ππ₯ ππ¦/ππ₯ = π^(γπ πππ γ^(β1) π₯" " ) Γ π ((β1)/β(1 β π₯^2 )) ππ¦/ππ₯ = (βπ π^(γπ πππ γ^(β1) π₯" " ))/β(1 β π₯^2 ) Again Differentiating π€.π.π‘.π₯. π/ππ₯ (ππ¦/ππ₯) = π/ππ₯ ((βπ π^(γπ πππ γ^(β1) π₯" " ))/β(1 β π₯^2 ))

Class 12
Important Question for exams Class 12