Ex 4.2, 11 - By using properties of determinants, show that: (i)

Ex 4.2, 11 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.2, 11 - Chapter 4 Class 12 Determinants - Part 3
Ex 4.2, 11 - Chapter 4 Class 12 Determinants - Part 4

 

 

  1. Chapter 4 Class 12 Determinants (Term 1)
  2. Serial order wise

Transcript

Ex 4.2, 11 By using properties of determinants, show that: (i) |■8(a−b−c&2a&2a@2b&b−c−a&2b@2c&2c&c−a−b)| = (a + b + c)3 Solving L.H.S |■8(a−b−c&2a&2a@2b&b−c−a&2b@2c&2c&c−a−b)| Applying R1 → R1 + R2 + R3 = |■8(a−b−c+2𝑏+2𝑐&2a+b−c−a+2c&2a+2𝑏+𝑐−𝑎−𝑏@2b&b−c−a&2b@2c&2c&c−a−b)| = |■8(𝐚+𝐛+𝐜&𝐚+𝐛+𝐜&𝐚+𝒃+𝒄@2b&b−c−a&2b@2c&2c&c−a−b)| Taking common (a + b + c) from R1 = (a+b+c) |■8(1&1&1@2b&𝑏−𝑐−𝑎&2𝑏@2c&2𝑐&c−a−b)| Applying C1 → C1 – C2 = (a+b+c) |■8(𝟏−𝟏&1&1@2b−(b−c−a)&b−c−a&2𝑏@2c−2c&2𝑐&𝑐−𝑎−𝑏)| = (a+b+c) |■8(𝟎&1&1@b+c+a&b−c−a&2𝑏@0&2𝑐&𝑐−𝑎−𝑏)| Applying C2 → C2 – C3 = (𝑎+𝑏+𝑐)|■8(0&𝟏−𝟏&1@𝑏+𝑐+𝑎&𝑏−𝑐−𝑎−2𝑏&2𝑏@0&2𝑐−(𝑐−𝑎−𝑏)&𝑐−𝑎−𝑏)| = (𝑎+𝑏+𝑐)|■8(0&𝟎&1@𝑏+𝑐+𝑎&−𝑏−𝑐−𝑎&2𝑏@0&𝑎+𝑏+𝑐&𝑐−𝑎−𝑏)| Taking (a + b + c) common from C1 = (𝑎+𝑏+𝑐)(𝑎+𝑏+𝑐)|■8(0&0&1@1&−𝑏−𝑐−𝑎&2𝑏@0&(𝑎+𝑏+𝑐)&𝑐−𝑎−𝑏)| = (𝑎+𝑏+𝑐)2 |■8(0&0&1@1&−(𝒂+𝒃+𝒄)&2𝑏@0&(𝒂+𝒃+𝒄)&𝑐−𝑎−𝑏)| Taking common (a + b + c) from C2 = (𝑎+𝑏+𝑐)2(a+b+c) |■8(0&0&1@1&−1&2𝑏@0&1&𝑐−𝑎−𝑏)| Expanding determinant along R1 = (a + b + c)3 ( 0|■8(−1&2b@1&c−a−b)|−0|■8(1&2b@0&c−a−b)|+1|■8(1&−1@0&1)|) = (a + b + c)3 (0−0+1(1−0)) = (a + b + c)3 (1) = (a + b + c)3 Hence proved

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.