Check sibling questions

Ex 4.2, 8 - Chapter 4 Class 12 Determinants - Part 4

Ex 4.2, 8 - Chapter 4 Class 12 Determinants - Part 5
Ex 4.2, 8 - Chapter 4 Class 12 Determinants - Part 6 Ex 4.2, 8 - Chapter 4 Class 12 Determinants - Part 7

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 8 By using properties of determinants, show that: (ii) |■8(1&1&[email protected]&b&[email protected]&b3&c3)| = (a – b) (b – c) (c – a) (a + b + c) Solving L.H.S |■8(1&1&[email protected]&b&[email protected]&b3&c3)| Applying C1 → C1 − C2 = |■8(𝟏−𝟏&1&[email protected]−b&b&c@𝐚𝟑 −𝐛𝟑&b3 &c3)| = |■8(𝟎&1&[email protected]−b&b&c@(𝐚 −𝐛)(𝐚𝟐+𝐛𝟐+𝐚𝐛) &b3&c3)| = |■8(0&1&1@𝐚−𝐛&b&c@(𝐚 −𝐛)(a2+b2+ab) &b3&c3)| Taking Common (a – b) from C1 = (a – b) |■8(0&1&[email protected]&b&c@(a2+b2+ab)&b3&c3)| Applying C2 → C2 − C3 = (a – b) |■8(0&𝟏−𝟏&[email protected]&b−c&c@(a2+b2+ab)&b3−c3&c3)| (x3 – y3 = (x – y)(x2 + y2 +xy)) = (a – b) |■8(0&𝟎&[email protected]&b−c&c@(a2+b2+ab)&(b−c)(b2+c2+bc)&c3)| Taking Common (b – c) from C2 = (a – b) (b – c) |■8(0&0&[email protected]&1&[email protected]+b2+ab&b2+c2+bc&c3)| Expanding determinant along R1 = (a – b) (b – c) (0|■8(1&𝑐@𝑏2+𝑐2+𝑏𝑐&𝑐3)|−0|■8(1&1@𝑎2+𝑏2+𝑎𝑏&𝑐3)|+1|■8(1&1@𝑎2+𝑏2+𝑎𝑏&𝑏2+𝑐2+𝑏𝑐)|) = (a – b) (b – c) (0−0+1|■8(1&1@𝑎2+𝑏2+𝑎𝑏&𝑏2+𝑐2+𝑏𝑐)|) = (a – b) (b – c) (1((b2 + c2 + bc) – (a2 + b2 + ab)) = (a – b) (b – c) (b2 + c2 + bc – a2 – b2 – ab) = (a – b) (b – c) (c2 – a2 + bc – ab) = (a – b) (b – c) ((c – a) (c + a) + b (c – a)) = (a – b) (b – c) ((c – a) (c + a + b)) = (a – b) (b – c) ((c – a) (a + b + c)) = R.H.S Hence Proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.