

Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 4.2
Ex 4.2, 2 Important
Ex 4.2, 3
Ex 4.2, 4
Ex 4.2, 5 Important
Ex 4.2, 6 Important
Ex 4.2, 7 Important
Ex 4.2, 8 (i) Important
Ex 4.2, 8 (ii)
Ex 4.2, 9 Important
Ex 4.2, 10 (i)
Ex 4.2, 10 (ii) Important You are here
Ex 4.2, 11 (i)
Ex 4.2, 11 (ii) Important
Ex 4.2, 12 Important
Ex 4.2, 13 Important
Ex 4.2, 14 Important
Ex 4.2, 15 (MCQ) Important
Ex 4.2, 16 (MCQ)
Last updated at Aug. 18, 2021 by Teachoo
Ex 4.2 , 10 By using properties of determinants, show that: (ii) y+ y y y y+ y y y+ = k3 (3y + k) Taking L.H.S y+ y y y y+ y y y+ Applying R1 R1 + R2 + R3 = y+ + + y+y+k+y y+y+y+k y y+ y y y+ = + + + y y+ y y y+ Taking out (3y + k) common from R1 = (3y + k) 1 1 1 y y+ y y y+ Applying C1 C1 C2 = (3y + k) 1 1 y+ y y+ = (3y + k) 1 1 y+k y 0 y+ Applying C2 C2 C3 = (3y + k) 0 1 0 y+k y 0 y+ = (3y + k) 0 1 y 0 y+ Expanding Determinant along R1 = (3y + k) 0 + 0 0 + +1 0 = (3y + k) (0 0 + 1 (k2 0)) = (3y + k) (k2) = k2 (3y + k) = R.H.S Hence Proved