Ex 10.1, 14 - Chapter 10 Class 11 Conic Sections
Last updated at April 17, 2024 by Teachoo
Ex 10.1
Last updated at April 17, 2024 by Teachoo
Ex 10.1, 14 (Method 1) Find the equation of a circle with centre (2, 2) and passes through the point (4, 5). We know that equation of circle is (x – h)2 + (y – k)2 = r2 Since, centre of circle is (2, 2) So h = 2 & k = 2 Our equation becomes (x – 2)2 + (y – 2)2 = r2 Now, Distance between centre and point on circle = radius Distance between points (h, 0) & (2,3) = r 4−22+5 −22 = r r = 4−22+5 −22 r = 22+32 r = 4+9 r = 13 Putting value of r in (1) (x – 2)2 + (y – 2)2 = r2 (x – 2)2 + (y – 2)2 = 132 (x – 2)2 + (y – 2)2 = 13 x2 + 22 – 4x + y2 + 22 – 4y = 13 x2 + 4 – 4x + y2 + 4 – 4y = 13 x2 + y2 – 4x – 4y = 13 – 4 – 4 x2 + y2 – 4x – 4y = 5 Hence, the required equation is x2 + y2 – 4x – 4y = 5 Ex 10.1, 14 (Method 2) Find the equation of a circle with centre (2, 2) and passes through the point (4, 5). We know that equation of circle is (x – h)2 + (y – k)2 = r2 Since, centre of circle is (2, 2) So h = 2 & k = 2 Our equation becomes (x – 2)2 + (y – 2)2 = r2 Since it is given that point (4, 5) passes through the circle Hence point (4, 5) will satisfy the equation of circle Putting x= h & y = 5 in (1) (x – 2)2 + (y – 2)2 = r2 (4 − 2)2 + (5 − 2)2 = r2 (2)2 + (3)2 = r2 4 + 9 = r2 13 = r2 r2 = 13 r = 13 Putting value of r in (1) (x – 2)2 + (y – 2)2 = r2 (x – 2)2 + (y – 2)2 = 132 (x – 2)2 + (y – 2)2 = 13 x2 + 22 – 4x + y2 + 22 – 4y = 13 x2 + 4 – 4x + y2 + 4 – 4y = 13 x2 + y2 – 4x – 4y = 13 – 4 – 4 x2 + y2 – 4x – 4y = 5 Hence, the required equation is x2 + y2 – 4x – 4y = 5