Slide13.JPG Slide14.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 10.1, 7 Find the centre and radius of the circle x2 + y2 – 4x – 8y – 45 = 0 Given x2 + y2 – 4x – 8y – 45 = 0. We need to make this in form (x – h)2 + (y – k)2 = r2 From (1) x2 – 4x + y2 – 8y = 45 (x2 – 2 (x) (2)) + (y2 – 2 (y) (4)) = 45 [x2 – 2(x)(2) + 22 – 22] + [y2 – 2(y)(4)+ 42 – 42] = 45 [x2 – 2(x)(2) + 22] + [y2 – 2(y)(4)+ 42] – 22 – 42 = 45 Using (a − b)2 = a2 + b2 − 2ab (x – 2)2 + (y – 4)2 – 4 – 16 = 45 (x – 2)2 + (y – 4)2 = 45 + 4 + 16 (x – 2)2 + (y – 4)2 = 65 Comparing (2) & (3) h = 2, k = 4 & r2 = 65 r = √65 Thus, Centre = (h, k) = (2, 4) And Radius = r = √𝟔𝟓

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo