Slide26.JPG

Slide27.JPG
Slide28.JPG
Slide29.JPG
Slide30.JPG Slide31.JPG Slide32.JPG


Transcript

Ex 10.1, 11 Find the equation of the circle passing through the points (2, 3) and (–1, 1) and whose centre is on the line x – 3y – 11 = 0. Let the equation of the circle be (x – h)2 + (y – k)2 = r2. Since the circle passes through points (2, 3) Point (2, 3) will satisfy the equation of circle Putting x = 2, y = 3 in (A) (2 – h)2 + (3 – k)2 = r2 (2)2 + (h)2 − 2(2)(h) + (3)2 + k2 − 2(3)(k) = r2 4 + h2 − 4h + 9 + k2 − 6k = r2 h2 + k2 − 4h − 6k + 4 + 9 = r2 h2 + k2 − 4h − 6k + 13 = r2 Also, circle passes through the (−1, 1) Point (−1, 1) will satisfy the equation of circle Putting x = –1, y = –1 in (A) (−1 − h)2 + (1 − k)2 = r2 (−1)2 (1 + h) 2 + (1 − k) 2 = r2 (1 + h) 2 + (1 − k) 2 = r2 (1)2 + h2 + 2h + 1 + k2 − 2k = r2 1 + h2 + 2h + 1 + k2 − 2k = r2 h2 + k2 + 2h − 2k + 1 + 1 = r2 h2 + k2 + 2h − 2k + 2 = r2 Since centre (h, k) lie on the circle x − 3y − 11 = 0 Point (h, k) will satisfy the equation of line x − 3y − 11 = 0 So, h − 3k − 11 = 0 h − 3k = 11 Solving (1) & (2) h2 + k2 − 4h − 6k + 13 = r2 …(1) h2 + k2 + 2h − 2k + 2 = r2 …(2) Subtracting (1) from (2) (h2 + k2 − 4h − 6k + 13) − (h2 + k2+ 2h − 2k + 2) = r2 − r2 h2 + k2 − 4h − 6k + 13 − h2 − k2 − 2h + 2k − 2 = 0 h2 − h2 + k2 − k2 − 4h − 6k + 13 − 2h + 2k − 2 = 0 0 + 0 − 6h − 4k + 11 = 0 −6h − 4k = −11 6h + 4k = 11 Now our equations are h − 3k = 11 …(3) 6h + 4k = 11 …(4) From (3) h − 3k = 11 h = 11 + 3k Putting value of h = 11 + 3k in (4) 6h + 4k = 11 6(11 + 3k) + 4k = 11 66 + 18k + 4k = 11 22k = 11 − 66 k = ﷐−55 ﷮22﷯ k = ﷐−𝟓﷮𝟐﷯ Putting value of k = ﷐−5﷮2﷯ in (3) h – 3k = 11 h = 11 + 3k h = 11 + 3(﷐−5﷮2﷯) h = ﷐22 − 15﷮2﷯ h = ﷐𝟕 ﷮𝟐﷯ Hence h = ﷐7﷮2﷯ & k = ﷐−5﷮2﷯ Putting value of (h, k) = ﷐﷐7﷮2﷯, ﷐−5﷮2﷯﷯ in (1) ﷐﷐2 – ﷐7﷮2﷯﷯﷮2﷯ + ﷐﷐3 – ﷐−5﷮2﷯﷯﷮2﷯ = r2 ﷐﷐﷐4 − 7﷮2﷯﷯﷮2﷯ + ﷐﷐﷐6 + 5﷮2﷯﷯﷮2﷯ = r2 ﷐﷐﷐−3﷮2﷯﷯﷮2﷯ + ﷐﷐﷐11﷮2﷯﷯﷮2﷯ = r2 ﷐9﷮4﷯ + ﷐121﷮4﷯ = r2 ﷐9 + 121﷮4﷯ = r2 ﷐130﷮4﷯ = r2 ﷐65﷮2﷯ = r2 r2 = ﷐𝟔𝟓﷮𝟐﷯ Now putting value of h, k & r2 in (A) (x − h)2 + (y − k)2 = r2 ﷐﷐x − ﷐7﷮2﷯﷯﷮2﷯ + ﷐﷐y − ﷐﷐−5﷮2﷯﷯﷯﷮2﷯ = ﷐65﷮2﷯ ﷐﷐x − ﷐7﷮2﷯﷯﷮2﷯ + ﷐﷐y +﷐5﷮2﷯﷯﷮2﷯ = ﷐65﷮2﷯ x2 + ﷐﷐﷐7﷮2﷯﷯﷮2﷯ − 2(x) ﷐﷐7﷮2﷯﷯ + y2 + ﷐25﷮4﷯ + 5y = ﷐65﷮2﷯ x2 + ﷐49﷮4﷯ − 7x + y2 + ﷐25﷮4﷯ + 5y = ﷐65﷮2﷯ x2 + y2 − 7x + 5y + ﷐49﷮4﷯ + ﷐25﷮4﷯ = ﷐65﷮2﷯ x2 + y2 − 7x + 5y + ﷐49 + 25﷮4﷯ = ﷐65﷮2﷯ x2 + y2 − 7x + 5y + ﷐74﷮4﷯ = ﷐65﷮2﷯ x2 + y2 − 7x + 5y + ﷐37﷮2﷯ = ﷐65﷮2﷯ x2 + y2 − 7x + 5y = ﷐65﷮2﷯ − ﷐37﷮2﷯ x2 + y2 − 7x + 5y = ﷐65 − 37﷮2﷯ x2 + y2 − 7x + 5y = ﷐28﷮2﷯ x2 + y2 − 7x + 5y = 14 x2 + y2 − 7x + 5y − 14 = 0 Which is the required equation of circle

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.