Example 21 - If pth, qth, rth sth terms of AP are in GP - Examples

Advertisement

Example 21 - Chapter 9 Class 11 Sequences and Series - Part 2

Advertisement

Example 21 - Chapter 9 Class 11 Sequences and Series - Part 3 Example 21 - Chapter 9 Class 11 Sequences and Series - Part 4

  1. Chapter 9 Class 11 Sequences and Series (Term 1)
  2. Serial order wise

Transcript

Example 21 If pth, qth, rth and sth terms of an A.P. are in G.P, then show that (p – q), (q – r), (r – s) are also in G.P. We know that the nth term of AP is a + (n – 1)d i.e. an = a + (n – 1)d It is given that ap, aq, ar & as in GP i.e. their common ratio is same So,𝑎_𝑞/𝑎_𝑝 = (ar )/qq = 𝑎𝑠/𝑎𝑟 We need to show (p – q), (q – r), (r – s) are in GP i.e. we need to show their common ratio is same i.e. we need to show (q − r )/(p − q) = (r − s )/(q − r) It is given (aq )/qp = (ar )/qq = (as )/ar From (A) & (B) (𝑞 − 𝑟)/(𝑝 − 𝑞) = (𝑟 − 𝑠)/(𝑞 − 𝑟) Hence (p – q), (q – r), (r – s) are in GP Hence proved

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.