Last updated at May 29, 2018 by Teachoo

Transcript

Example 12 Find the sum of first n terms and the sum of first 5 terms of the geometric series 1 + 2/3 "+" 4/9 + ……… 1 + 2/3 "+" 4/9 + ……… We know that Sn = (a(1 − 𝑟^𝑛))/(1 − r) where Sn = sum of n terms of GP n is the number of terms a is the first term r is the common ratio Here, First term = a = 1 and common ratio = r = (2/3)/1 Now, we need to calculate sum of n terms of GP We use the formula, Sn = (a(1 − 𝑟^𝑛))/(1 − r) Putting a = 1 , r = 2/3 = 1(1 − ( 2/3)^𝑛 )/(1 − 2/3) = (1 − ( 2/3)^𝑛)/((3 − 2)/3) = (1 − ( 2/3)^𝑛)/(1/3) = 3/1 ["1 –" (2/3)^𝑛 ] = 3["1 –" (2/3)^𝑛 ] Thus, Sum of n terms = Sn = 3["1 –" (2/3)^𝑛 ] Now, we need to find sum of first 5 terms of GP Putting n = 5 in Sn S5 = 3["1 –" (2/3)^5 ] = 3 ["1 –" (2^5/3^5 )] = 3 ["1 –" (32/243)] = 3 [(243 − 32)/243] = 3 [211/243] = 211/81 Hence, sum of first five terms of GP is 211/81

Examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6 Important

Example 7

Example 8

Example 9

Example 10

Example 11

Example 12 You are here

Example 13

Example 14 Important

Example 15 Important

Example 16

Example 17 Important

Example 18 Important

Example 19 Important

Example 20

Example 21 Important

Example 22

Example 23 Important

Example 24 Important

Chapter 9 Class 11 Sequences and Series

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.