

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Examples
Example 1 (ii)
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Question 1 Deleted for CBSE Board 2024 Exams You are here
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Important Deleted for CBSE Board 2024 Exams
Question 9 Deleted for CBSE Board 2024 Exams
Question 10 Important Deleted for CBSE Board 2024 Exams
Last updated at May 29, 2023 by Teachoo
Question 1, In an A.P. if mth term is n and the nth term is m, where m n, find the pth term. We know that an = a + (n 1) d i.e. nth term = a + (n 1) d Thus, mth term = am = a + (m 1) d It is given that mth term is n a + (m 1) d = n Also, it is given that nth term is m a + (n 1) d = m First we find common difference, Subtracting (2) from (1) [a + (m 1) d] [a + (n 1) d] = n m a + (m 1)d a (n 1)d = n m a a + (m 1)d (n 1)d = n m (m 1)d (n 1)d = n m md d nd + d = n m md nd = n m d(m n) = n m d = ( )/( ) d = (( ) )/( ) 1 d = 1 Now we have to calculate a Putting d = 1 in (2) a + (n 1) d = m a + (n 1) (-1) = m a n + 1 = m a = m + n 1 For pth term, we use the formula, an = a + (n 1)d putting n = p, d = -1 and a = m + n 1 ap = (m + n 1) + ( p 1) ( 1) = m + n 1 + ( p + 1) = m + n 1 p + 1 = m + n p Thus, pth term = m + n p