Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Examples

Example 1 (i)

Example 1 (ii)

Example 2

Example 3 Important

Example 4

Example 5 Important

Example 6

Example 7 Important

Example 8

Example 9 Important

Example 10 Important

Example 11

Example 12 Important

Example 13 Important

Example 14

Question 1 Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams You are here

Question 3 Important Deleted for CBSE Board 2024 Exams

Question 4 Deleted for CBSE Board 2024 Exams

Question 5 Important Deleted for CBSE Board 2024 Exams

Question 6 Important Deleted for CBSE Board 2024 Exams

Question 7 Deleted for CBSE Board 2024 Exams

Question 8 Important Deleted for CBSE Board 2024 Exams

Question 9 Deleted for CBSE Board 2024 Exams

Question 10 Important Deleted for CBSE Board 2024 Exams

Chapter 8 Class 11 Sequences and Series

Serial order wise

Last updated at May 29, 2023 by Teachoo

Question 2, If the sum of n terms of an A.P. is nP + 1/2n(n 1)Q , where P and Q are constants, find the common difference. Let a1, a2, an be the given A.P Given, Sum of n terms = nP + 1/2 n (n 1) Q Sn = nP + 1/2 n (n 1) Q Putting n = 1 in (1) S1 = 1 P + 1/2 1 (1 1)Q S1 = P + 1/2(0) S1 = P But sum of first 1 terms will be the first term a1 = S1 = P Sn = nP + 1/2 n (n 1) Q (1) Putting n = 2 in (1) S2 = 2P + 1/2 2(2 1)Q S2 = 2P + 1/2 2 1 Q S2 = 2P + Q Sum of first two terms = First term + Second term S2 = a1 + a2 S2 a1 = a2 a2 = S2 a1 Putting a1 = P , S2 = 2P + Q a2 = 2P + Q P = 2P P + Q = P + Q Thus, a2 = P + Q Common difference (d) = a2 a1 = (P + Q) P = Q Hence, common difference of the given A.P. is Q