Examples
Example 1 (ii)
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important You are here
Example 11
Example 12 Important
Example 13 Important
Example 14
Question 1 Deleted for CBSE Board 2025 Exams
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Important Deleted for CBSE Board 2025 Exams
Question 7 Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Example 10 Find the sum of the sequence 7, 77, 777, 7777, ... to n terms. 7, 77, 777, 7777, ... n terms Here, 77/7 = 11 & 777/77 = 10.09 Thus, ( )/( ) ( )/( ) i.e. common ratio is not same This is not a GP We need to find sum Sum = 7 + 77 + 777 + 7777 + ...upto n terms = 7(1 + 11 + 111 + . upto n terms) = 7(1 + 11 + 111 + . upto n terms) Multiplying & dividing by 9 = 7/9 [9(1 + 11 + 111 + upto n term) = 7/9 [9 + 99 + 999 + 9999 + upto n terms] = 7/9 [(10 1) + (100 1) + (1000 1) + upto n terms] = 7/9 [(10 + 100 + 1000 + .n terms) 1 1 1 upto n terms] = 7/9 [(10 + 100 + 1000 + .n terms) (1 + 1 + 1 + upto n terms)] = 7/9 [(10 + 100 + 1000 + .n terms) n 1] = 7/9 [(10 + 100 + 1000 + .n terms) n] Now, a = 10, r = 10 For, r > 1 i.e. Sn = (a( ^ 1))/( 1) Putting value of a = 10 & r = 10 Sn = (10( 10 ^ 1))/(10 1) Sn = (10( 10 ^ 1))/9 Now substituting this value in (1) Sum = 7/9 [(10 + 102 + 103 + upto n terms) n] Sum = 7/9 [(10( 10 ^ 1))/9 " n" ] Thus, 7, 77, 777, 7777, ...upto n terms = 7/9 [(10( 10 ^ 1))/9 " n" ]