


Subscribe to our Youtube Channel - https://you.tube/teachoo
Last updated at Dec. 8, 2016 by Teachoo
Transcript
Ex 4.1,19 Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3. Introduction If a number is multiple of 3, then it will come in table of 3 3 × 1 = 3 3 × 2 = 6 3 × 3 = 9 Any number multiple of 3 = 3 × Natural number Ex 4.1,19 Prove the following by using the principle of mathematical induction for all n ∈ N: n (n + 1) (n + 5) is a multiple of 3. Let P(n): n (n + 1) (n + 5) = 3d, where d ∈ N For n = 1 , L.H.S = 1 (1 + 1) (1 + 5) = 1.(2).(6) = 12 = (3) × 4 = R.H.S , ∴P(n) is true for n = 1 Assume P(k) is true k (k + 1) (k + 5) = 3m , where m ∈ N ((k(k + 1)) (k + 5)= 3m (k2 + k) (k + 5) = 3m k2(k + 5) + k(k + 5) = 3m k3 + 5k2 + k2 + 5k =3m k3 + 6k2 + 5k =3m We will prove that P(k + 1) is true L.H.S = (k+1) ((k+1)+1) ((k+1)+5) = (k+1) (k+2) (k+6) = ((k + 1) (k + 2)) (k + 6) = ( k(k + 2) + 1(k + 2)) (k + 6) = ( k2 + 2k + k + 2) (k + 6) = (k + 6) ( k2 + 3k +2) = k (k2 + 3k +2) + 6 (k2 + 3k +2) = k3 + 3k2 +2k + 6k2 + 6 × 3k + 6 × 2 = k3 + 3k2 +2k + 6k2 + 18k + 12 = k3 + 9k2 + 20k +12 = (3m – 6k2 – 5k ) + 9k2 + 20k +12 = 3m – 6k2 + 9k2 – 5k + 20k +12 = 3m + 3k2 + 15k + 12 = 3 (m + k2 + 5k + 4) = 3 r , where r = m + k2 + 5k +4 r is a natural number ∴ P(k + 1) is true whenever P(k) is true. ∴ By the principle of mathematical induction, P(n) is true for n, where n is a natural number
Ex 4.1
Ex 4.1, 2
Ex 4.1, 3 Important
Ex 4.1, 4
Ex 4.1, 5 Important
Ex 4.1, 6
Ex 4.1, 7 Important
Ex 4.1, 8 Important
Ex 4.1, 9
Ex 4.1, 10
Ex 4.1, 11 Important
Ex 4.1, 12
Ex 4.1, 13 Important
Ex 4.1, 14
Ex 4.1, 15 Important
Ex 4.1, 16 Important
Ex 4.1, 17 Important
Ex 4.1, 18 Important
Ex 4.1, 19 You are here
Ex 4.1, 20
Ex 4.1, 21 Important
Ex 4.1, 22
Ex 4.1, 23 Important
Ex 4.1, 24 Important
About the Author