


Last updated at May 29, 2018 by Teachoo
Transcript
Ex 4.1,10 Prove the following by using the principle of mathematical induction for all n N: 1/2.5 + 1/5.8 + 1/8.11 + .+ 1/((3 1)(3 + 2)) = /((6 + 4)) Let P (n) : 1/2.5 + 1/5.8 + 1/8.11 + .+ 1/((3 1)(3 + 2)) = /((6 + 4)) For n = 1, L.H.S = 1/2.5 = 1/10 R.H.S = 1/((6(1) + 4)) = 1/((6 + 4)) = 1/10 Hence, L.H.S. = R.H.S , P(n) is true for n = 1 Assume P(k) is true 1/2.5 + 1/5.8 + 1/8.11 + .+ 1/((3 1)(3 + 2)) = /((6 + 4)) We will prove that P(k + 1) is true. R.H.S = (( + 1))/((6( + 1) + 4) ) L.H.S = 1/2.5 + 1/5.8 + 1/8.11 + .+ 1/((3( +1) 1)(3( +1)+ 2))
Ex 4.1
Ex 4.1, 2
Ex 4.1, 3
Ex 4.1, 4
Ex 4.1, 5
Ex 4.1, 6
Ex 4.1, 7 Important
Ex 4.1, 8
Ex 4.1, 9
Ex 4.1, 10 You are here
Ex 4.1, 11 Important
Ex 4.1, 12
Ex 4.1, 13 Important
Ex 4.1, 14
Ex 4.1, 15
Ex 4.1, 16
Ex 4.1, 17
Ex 4.1, 18
Ex 4.1, 19
Ex 4.1, 20
Ex 4.1, 21 Important
Ex 4.1, 22
Ex 4.1, 23 Important
Ex 4.1, 24
About the Author