Check sibling questions

Ex 4.1, 16 - Prove 1/1.4 + 1/4.7 ... + 1/(3n-2)(3n+1) = n/(3n+1) - Equal - 1 upon addition

Ex 4.1, 16 - Chapter 4 Class 11 Mathematical Induction - Part 2
Ex 4.1, 16 - Chapter 4 Class 11 Mathematical Induction - Part 3
Ex 4.1, 16 - Chapter 4 Class 11 Mathematical Induction - Part 4


Transcript

Ex 4.1,16 Prove the following by using the principle of mathematical induction for all n ∈ N: 1/1.4 + 1/4.7 + 1/7.10 +…….+ 1/((3𝑛 βˆ’ 2)(3𝑛 + 1)) = 𝑛/((3𝑛 + 1)) Let P (n) : 1/1.4 + 1/4.7 + 1/7.10 +…….+ 1/((3𝑛 βˆ’ 2)(3𝑛 + 1)) = 𝑛/((3𝑛 + 1)) For n = 1, L.H.S = 1/1.4 = 1/4 R.H.S = 1/((3(1) + 1)) = 1/((3 + 1)) = 1/4 Hence, L.H.S. = R.H.S , ∴ P(n) is true for n = 1 Assume P(k) is true 1/1.4 + 1/4.7 + 1/7.10 +…….+ 1/((3π‘˜ βˆ’ 2)(3π‘˜ + 1)) = π‘˜/((3π‘˜ + 1)) We will prove that P(k + 1) is true. R.H.S = ((π‘˜ + 1))/((3(π‘˜ + 1)+ 1) ) L.H.S = 1/1.4 + 1/4.7 + 1/7.10 +…….+ 1/((3(π‘˜ + 1)βˆ’ 2)(3(π‘˜ + 1)+ 1))

Davneet Singh's photo - Teacher, Engineer, Marketer

Article by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.