



Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 4.1
Ex 4.1, 2
Ex 4.1, 3 Important
Ex 4.1, 4
Ex 4.1, 5 Important
Ex 4.1, 6
Ex 4.1, 7 Important
Ex 4.1, 8 Important
Ex 4.1, 9
Ex 4.1, 10
Ex 4.1, 11 Important
Ex 4.1, 12
Ex 4.1, 13 Important
Ex 4.1, 14
Ex 4.1, 15 Important
Ex 4.1, 16 Important
Ex 4.1, 17 Important You are here
Ex 4.1, 18 Important
Ex 4.1, 19
Ex 4.1, 20
Ex 4.1, 21 Important
Ex 4.1, 22
Ex 4.1, 23 Important
Ex 4.1, 24 Important
Last updated at Feb. 15, 2020 by Teachoo
Ex 4.1,17 Prove the following by using the principle of mathematical induction for all n N: 1/3.5 + 1/5.7 + 1/7.9 + .+ 1/((2 + 1)(2 + 3)) = /(3(2 + 3)) Let P (n) : 1/3.5 + 1/5.7 + 1/7.9 + .+ 1/((2 + 1)(2 + 3)) = /(3(2 + 3)) For n = 1, L.H.S = 1/3.5 = 1/15 R.H.S = 1/(3(2(1) + 3)) = 1/(3(2 +3)) = 1/(3 5) = 1/15 Hence, L.H.S. = R.H.S , P(n) is true for n = 1 Assume P(k) is true 1/3.5 + 1/5.7 + 1/7.9 + .+ 1/((2 + 1)(2 + 3)) = /(3(2 + 3)) We will prove that P(k + 1) is true. R.H.S = (( + 1))/3(2( + 1) + 3) L.H.S = 1/3.5 + 1/5.7 + 1/7.9 + .+ 1/((2( + 1) + 1)(2( + 1) + 3))