Mathematical Induction - Questions and Solutions
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams You are here
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Important Deleted for CBSE Board 2025 Exams
Question 9 Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Important Deleted for CBSE Board 2025 Exams
Question 14 Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 16 Important Deleted for CBSE Board 2025 Exams
Question 17 Important Deleted for CBSE Board 2025 Exams
Question 18 Important Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Question 20 Deleted for CBSE Board 2025 Exams
Question 21 Important Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Question 23 Important Deleted for CBSE Board 2025 Exams
Question 24 Important Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Question 5: Prove the following by using the principle of mathematical induction for all n N: 1.3 + 2.32 + 3.33 + .. n.3n = ((2 1) 3^( + 1) + 3 )/4 Let P(n) : 1.3 + 2.32 + 3.33 + .. n.3n = ((2 1) 3^( + 1) + 3 )/4 For n = 1, we have L.H.S =1.3 = 3 R.H.S = ((2.1 1) 3^(1+1) + 3)/4 = (1 3^2 + 3)/4 = (9 + 3)/4 = 12/4 = 3 Hence, L.H.S. = R.H.S P(n) is true for n = 1 Assume P(k) is true 1.3 + 2.32 + 3.33 + .. k.3k = ((2 1) 3^( + 1) + 3 )/4 We will prove that P(k + 1) is true. 1.3 + 2.32 + 3.33 + .. + (k + 1)3k + 1 = ((2( + 1) 1) 3^(( +1) + 1) + 3 )/4 1.3 + 2.32 + 3.33 + .. + (k + 1)3k + 1 = ((2 + 2 1) 3^( + 2) + 3 )/4 1.3 + 2.32 + 3.33 + .. + (k + 1)3k + 1 = ((2 + 1) 3^( + 2) + 3 )/4 1.3 + 2.32 + 3.33 + .. + k3k + (k + 1)3k + 1 = ((2 + 1) 3^( + 2) + 3 )/4 We have to prove P(k+1) from P(k) i.e. (2) from (1) From (1) 1.3 + 2.32 + 3.33 + .. k.3k = ((2 1) 3^( + 1) + 3 )/4 Adding (k + 1) 3k+1both sides 1.3 + 2.32 + 3.33 + .. k.3k + (k + 1)3k + 1 = ((2 1) 3^( + 1) + 3 )/4 + (k + 1)3k + 1 = ((2 1) 3^( + 1) + 3 + 4( + 1) 3^( +1))/4 = ((2 (3 ^( + 1)) 3^( + 1) ) + 3 + 4( )3^( +1)+4(3^( +1) ))/4 = (2 (3 ^( + 1)) + 4( ) 3^( +1) 3^( + 1) + 4(3^( +1) ) + 3)/4 = (6 (3 ^( + 1)) + 3(3^( +1) ) + 3)/4 = ((3^( +1) )(6 + 3) + 3)/4 = ((3^( +1) )3(2 + 1) + 3)/4 = ((3^1 3^( +1) )(2 + 1) + 3)/4 = ((3^( +2) )(2 + 1) + 3)/4 Thus, 1.3 + 2.32 + 3.33 + .. + k3k + (k + 1)3k + 1 = ((2 + 1) 3^( + 2) + 3 )/4 which is the same as P(k + 1) P(k + 1) is true whenever P(k) is true. By the principle of mathematical induction, P(n) is true for n, where n is a natural number