



Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Ex 4.1
Ex 4.1, 2
Ex 4.1, 3 Important
Ex 4.1, 4
Ex 4.1, 5 Important
Ex 4.1, 6
Ex 4.1, 7 Important
Ex 4.1, 8 Important
Ex 4.1, 9
Ex 4.1, 10
Ex 4.1, 11 Important
Ex 4.1, 12
Ex 4.1, 13 Important
Ex 4.1, 14 You are here
Ex 4.1, 15 Important
Ex 4.1, 16 Important
Ex 4.1, 17 Important
Ex 4.1, 18 Important
Ex 4.1, 19
Ex 4.1, 20
Ex 4.1, 21 Important
Ex 4.1, 22
Ex 4.1, 23 Important
Ex 4.1, 24 Important
Last updated at May 29, 2018 by Teachoo
Ex 4.1,14 Prove the following by using the principle of mathematical induction for all n β N: ("1 + " 1/1) ("1+" 1/2) ("1+" 1/3)β¦.. ("1+ " 1/π) = (n + 1) Let P(n) : ("1 + " 1/1) ("1+" 1/2) ("1+" 1/3)β¦.. ("1+ " 1/π) = (n + 1) For n = 1, L.H.S = ("1 + " 1/1) = 1 + 1 = 2 R.H.S = (1 + 1) = 2 Thus, L.H.S. = R.H.S , β΄P(n) is true for n = 1 Assuming P(k) is true P(k) : ("1 + " 1/1) ("1+" 1/2) ("1+" 1/3)β¦.. ("1+ " 1/π) = (k + 1) We will prove P(k + 1) is true R.H.S = ((k + 1) + 1) L.H.S = ("1 + " 1/1) ("1+" 1/2) ("1+" 1/3)β¦.. ("1+ " 1/((k +1) )) β΄ By the principle of mathematical induction, P(n) is true for n, where n is a natural number