Find an acute angle θ when cos⁡θ - sin⁡θ/cos⁡θ  + sin⁡θ  = 1+ √3/1 + √3

[Class 10] Find an acute angle θ when cosθ − sin θ cosθ + sin θ = 1−√3 - CBSE Class 10 Sample Paper for 2023 Boards - Maths Standard

part 2 - Question 25 (Choice 2) - CBSE Class 10 Sample Paper for 2023 Boards - Maths Standard - Solutions of Sample Papers for Class 10 Boards - Class 10

 

Share on WhatsApp

Transcript

Question 25 (Choice 2) Find an acute angle θ when (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/(1 + √3)Given (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/(1 + √3) Cross multiplying (1 + √3) (cos θ − sin θ) = (1 − √3) (cos θ + sin θ) 1 (cos θ − sin θ) + √3(cos θ − sin θ) = 1 (cos θ + sin θ) − √3 (cos θ + sin θ) cos θ − sin θ + √3cos θ − √𝟑 sin θ = cos θ + sin θ − √3cos θ − √𝟑sin θ − sin θ + √3cos θ = sin θ − √3cos θ √3cos θ + √3cos θ = sin θ + sin θ 2√𝟑cos θ = 2 sin θ √3cos θ = sin θ √3 = sin⁡〖θ 〗/cos⁡〖θ 〗 tan θ = √3 Since tan 60° = (cos⁡θ − sin⁡θ)/(cos⁡θ + sin⁡θ ) = (1 − √3)/ So, the correct answer is (c) √3 = sin⁡〖θ 〗/cos⁡〖θ 〗 tan θ = √𝟑 Since tan 60° = √3 Therefore, θ = 60°

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo