The number of solutions of 3 ^{ x + y } = 243 and 243 ^{ x − y } = 3 is
(a) 0 (b) 1 (c) 2 (d) infinite
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
CBSE Class 10 Sample Paper for 2022 Boards - Maths Standard [MCQ]
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6
Question 7
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18
Question 19 Important
Question 20
Question 21 Important
Question 22 Important
Question 23 Important
Question 24
Question 25 Important
Question 26
Question 27
Question 28 Important
Question 29 Important
Question 30
Question 31 Important
Question 32 Important
Question 33
Question 34 Important
Question 35
Question 36 Important
Question 37 Important
Question 38
Question 39 Important
Question 40 You are here
Question 41 (Case Based Question) Important
Question 42 (Case Based Question)
Question 43 (Case Based Question) Important
Question 44 (Case Based Question)
Question 45 (Case Based Question)
Question 46 (Case Based Question)
Question 47 (Case Based Question) Important
Question 48 (Case Based Question)
Question 49 (Case Based Question) Important
Question 50 (Case Based Question) Important
CBSE Class 10 Sample Paper for 2022 Boards - Maths Standard [MCQ]
Last updated at May 29, 2023 by Teachoo
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Question 40 The number of solutions of 3x + y = 243 and 243x − y = 3 is (a) 0 (b) 1 (c) 2 (d) infinite 3x + y = 243 3x + y = 35 Comparing powers x + y = 5 243x − y = 3 (35)x − y = 3 35(x − y) = 31 Comparing powers 5(x − y) = 1 x − y = 𝟏/𝟓 Adding (1) and (2) (x + y) + (x − y) = 5 + 1/5 2x = (5(5) + 1)/5 2x = (25 + 1)/5 2x = 26/5 x = 𝟏𝟑/𝟓 Putting value of x in (1) x + y = 5 13/5 + y = 5 y = 5 − 𝟏𝟑/𝟓 y = (𝟓(𝟓) − 𝟏𝟑)/𝟓 y = (𝟐𝟓 − 𝟏𝟑)/𝟓 y = 𝟏𝟐/𝟓 Thus, x = 𝟏𝟑/𝟓 , y = 𝟏𝟐/𝟓 Since only one pair of solutions are there ∴ Number of solutions = 1 So, the correct answer is (b)