    1. Chapter 3 Class 10 Pair of Linear Equations in Two Variables (Term 1)
2. Serial order wise
3. Ex 3.5

Transcript

Ex 3.5 ,1 Which of the following pairs of linear equations has unique solution, no solution, or infinitely many solutions. In case there is a unique solution, find it by using cross multiplication method (ii) 2x + y = 5 3x + 2y = 8 2x + y = 5 3x + 2y = 8 2x + y = 5 2x + 1y – 5 = 0 Comparing with a1x + b1y + c1 = 0 ∴ a1 = 2, b1 = 1, c1 = –5 3x + 2y = 8 3x + 2y – 8 = 0 Comparing with a2x + b2y + c2 = 0 ∴ a2 = 3, b2 = 2, c2 = –8 a1 = 2, b1 = 1, c1 = –5 & a2 = 3, b2 = 2, c2 = –8 𝒂𝟏/𝒂𝟐 𝑎1/𝑎2 = 2/3 𝒃𝟏/𝒃𝟐 𝑏1/𝑏2 = 1/2 𝒄𝟏/𝒄𝟐 𝑐1/𝑐2 = (−5)/(−8) 𝑐1/𝑐2 = 5/8 Since 𝑎1/𝑎2 ≠ 𝑏1/𝑏2 We have a unique solution Solving 2x + y = 5 …(1) 3x + 2y = 8 …(2) For cross-multiplication 2x + y – 5 = 0 3x + 2y – 8 = 0 𝑥/(1×(−8) − 2 ×(−5) ) 𝑥/((−8) + 10 ) 𝑥/(2 ) = 𝑦/(3 ×(−5) − 2 × (−8) ) = 𝑦/(−15 + 16) = 𝑦/(1 ) = 1/(2 × 2 − 3 × 1 ) = 1/(4 − 3 ) = 1/1 Now, 𝒙/𝟐 = 𝟏/𝟏 x = 2 × 1 ∴ x = 2 𝒚/𝟏 = 𝟏/𝟏 y = 1 × 1 ∴ y = 1 Therefore, x = 2, y = 1 is the solution of our equation 