Check sibling questions

Example 7 - Show that the line PQ is the perpendicular - Examples

Example 7 - Chapter 7 Class 9 Triangles - Part 2
Example 7 - Chapter 7 Class 9 Triangles - Part 3

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Example 7 AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (see figure). Show that the line PQ is the perpendicular bisector of AB. Given: P is equidistant from points A & B PA = PB and Q is equidistant from points A & B QA = QB To prove: PQ is perpendicular bisector of AB, i.e. AC = BC & ∠ PCA = ∠ PCB = 90° Proof : In ∆ PAQ and ∆ PBQ. AP = BP AQ = BQ PQ = PQ So, Δ PAQ ≅ Δ PBQ Hence, ∠ APQ = ∠ BPQ In Δ PAC and Δ PBC. AP = BP ∠ APC = ∠ BPC PC = PC Δ PAC ≅ Δ PBC Therefore, AC = BC and ∠ ACP = ∠ BCP ∠ ACP = ∠ BCP …(4) Since, AB is a line segment, ∠ ACP + ∠ BCP = 180° ∠ ACP + ∠ ACP = 180° 2∠ ACP = 180° ∠ ACP = 180"°" /2 ∠ ACP = 90° So, ∠ ACP = ∠ BCP = 90° Thus, AC = BC & ∠ ACP = ∠ BCP = 90° ∴ PQ is perpendicular bisector of AB. Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.