Check sibling questions

Evaluate ∫ |x 2 - 2x|  dx from 1 to 3

Evaluate Integral |x^2 - 2x| from 1 to 3 - Teachoo - CBSE Class 12 Sam

Question 30 - CBSE Class 12 Sample Paper for 2020 Boards - Part 2
Question 30 - CBSE Class 12 Sample Paper for 2020 Boards - Part 3

This video is only available for Teachoo black users

Note : - This is similar to Example 30 of NCERT – Chapter 7 Class 12

Check the answer here https://www.teachoo.com/4811/727/Example-30---Evaluate-integral--1----2--x3---x--dx/category/Examples/

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Question 30 Evaluate ∫ 3 1 |π‘₯^2βˆ’2π‘₯| dx |π‘₯^2βˆ’2π‘₯|=|π‘₯(π‘₯βˆ’2)| =|π‘₯| |π‘₯βˆ’2| Thus, π‘₯=0, π‘₯=2 Since our integration is from 1 to 3, we ignore x = 0 ∴ |π‘₯^2βˆ’2π‘₯|= {(π‘₯Γ—βˆ’(π‘₯βˆ’2) 𝑖𝑓 1≀π‘₯<2π‘₯Γ—(π‘₯βˆ’2) 𝑖𝑓 2≀π‘₯<3)─ |π‘₯^2βˆ’2π‘₯|= {(βˆ’(π‘₯^2βˆ’2π‘₯) 𝑖𝑓 1≀π‘₯<2(π‘₯^2βˆ’2π‘₯) 𝑖𝑓 2≀π‘₯<3)─ Now, ∫_1^3 |π‘₯^2βˆ’2π‘₯| dx = βˆ’βˆ«_1^2β–’(π‘₯^2βˆ’2π‘₯) 𝑑π‘₯+∫_2^3β–’(π‘₯^2βˆ’2π‘₯) 𝑑π‘₯ = βˆ’βˆ«_1^2β–’π‘₯^2 𝑑π‘₯+∫_1^2β–’2π‘₯ 𝑑π‘₯+∫_2^3β–’π‘₯^2 𝑑π‘₯βˆ’βˆ«_2^3β–’2π‘₯ 𝑑π‘₯ = βˆ’βˆ«_1^2β–’π‘₯^2 𝑑π‘₯+∫_2^3β–’π‘₯^2 𝑑π‘₯+∫_1^2β–’2π‘₯ 𝑑π‘₯βˆ’βˆ«_2^3β–’2π‘₯ 𝑑π‘₯ = βˆ’[π‘₯^3/3]_1^2+[π‘₯^3/3]_2^3+[π‘₯^2 ]_1^2βˆ’[π‘₯^2 ]_2^3 = βˆ’[2^3/3βˆ’1^3/3]+[3^3/3βˆ’2^3/3]+[2^2βˆ’1^2 ]βˆ’[3^2βˆ’2^2 ] = βˆ’[8/3βˆ’1/3]+[27/3βˆ’8/3]+[4βˆ’1]βˆ’[9βˆ’4] = βˆ’[7/3]+[19/3]+[3]βˆ’[5] = 12/3βˆ’2 = 4βˆ’2 = 2

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.