Check sibling questions

Question 24 (OR 2 nd question)

Find the inverse of the following matrix using elementary transformations

[2 -1 3 -5 3 1 -3 2 3]


Transcript

Question 24 (OR 2nd question) Find the inverse of the following matrix using elementary transformations [■8(2&−1&3@−5&3&1@−3&2&3)] Let A = [■8(2&−1&3@−5&3&1@−3&2&3)] We know that A = IA [■8(2&−1&3@−5&3&1@−3&2&3)]= [■8(1&0&0@0&1&0@0&0&1)] A R1 → R1 + 𝑹_𝟐/𝟓 [■8(1&(−2)/5&16/5@−5&3&1@−3&2&3)]= [■8(1&1/5&0@0&1&0@0&0&1)] A R2 → R2 + 5R1 [■8(1&(−2)/5&16/5@−5+5(1)&3+5((−2)/5)&1+5(16/5)@−3&2&3)]= [■8(1&1/5&0@0+5(1)&1+5(1/5)&0+5(0)@0&0&1)] A [■8(1&(−2)/5&16/5@0&1&17@−3&2&3)]= [■8(1&1/5&0@5&2&0@0&0&1)] A R3 → R3 + 3R1 [■8(1&(−2)/5&16/5@0&1&17@−3+3(1)&2+3(−2/5)&3+3(16/5) )]= [■8(1&1/5&0@5&2&0@0+3(1)&0+3(1/5)&1+3(0))] A [■8(1&(−2)/5&16/5@0&1&17@0&4/5&63/5)]= [■8(1&1/5&0@5&2&0@3&3/5&1)] A R1 → R1 + 𝟐/𝟓R2 [■8(1+2/5(0)&(−2)/5+2/5(1)&16/5+2/5(17)@0&1&17@0&4/5&63/5)]= [■8(1+2/5(5)&1/5+2/5(2)&0+2/5(0)@5&2&0@3&3/5&1)] A [■8(1&0&10@0&1&17@0&4/5&63/5)]= [■8(3&1&0@5&2&0@3&3/5&1)] A R3 → R3 – 𝟒/𝟓R2 [■8(1&0&10@0&1&17@0−4/5(0)&4/5−4/5(1)&63/5−4/5(17))]= [■8(3&1&0@5&2&0@3−4/5(5)&3/5−4/5(2)&1−4/5(0))] A [■8(1&0&10@0&1&17@0&0&−1)]= [■8(3&1&0@5&2&0@−1&−1&1)] A R3 → R3 × –1 [■8(1&0&10@0&1&17@0&0&1)]= [■8(3&1&0@5&2&0@1&1&−1)] A R1 → R1 – 10R3 [■8(1−10(0)&0−10(0)&10−10(1)@0&1&17@0&0&1)]= [■8(3−10(1)&1−10(1)&0−10(−1)@5&2&0@1&1&−1)] A [■8(1&0&0@0&1&17@0&0&1)]= [■8(−7&−9&10@5&2&0@1&1&−1)] A R2 → R2 – 17R3 [■8(1&0&0@0−17(0)&1−17(0)&17−17(1)@0&0&1)]= [■8(−7&−9&10@5−17(1)&2−17(1)&0−17(−1)@1&1&−1)] A [■8(1&0&0@0&1&0@0&0&1)] = [■8(−7&−9&10@−12&−15&17@1&1&−1)] A "I"= [■8(−7&−9&10@−12&−15&17@1&1&−1)] A This is similar to I = A-1A Thus, A-1 = [■8(−7&−9&10@−12&−15&17@1&1&−1)]

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo