Check sibling questions

Question 22

If vector p = i + j + k and q = i – 2j + k, find a vector of magnitude 5√3 units perpendicular to the vector q and coplanar with vectors p and q


Transcript

Question 22 If 𝑝 ⃗ = 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ and 𝑞 ⃗ = 𝑖 ̂ – 2𝑗 ̂ + 𝑘 ̂, find a vector of magnitude 5√3 units perpendicular to the vector 𝑞 ⃗ and coplanar with vectors 𝑝 ⃗ and 𝑞 ⃗ Let 𝑟 ⃗ be the required vector 𝑟 ⃗ = a𝑖 ̂ + b𝑗 ̂ + c𝑘 ̂ Now, given that 𝑟 ⃗ & 𝑞 ⃗ are perpendicular Therefore, 𝑟 ⃗.𝑞 ⃗ = 0 (a𝑖 ̂ + b𝑗 ̂ + c𝑘 ̂) . (𝑖 ̂ – 2𝑗 ̂ + 𝑘 ̂) = 0 a × 1 + b × (–2) + c × 1 = 0 a – 2b + c = 0 Also, given that 𝑟 ⃗ is coplanar with vectors 𝑝 ⃗ and 𝑞 ⃗ Therefore, [𝒑 ⃗" " 𝒒 ⃗" " 𝒓 ⃗ ] = 0 Finding [𝒑 ⃗" " 𝒒 ⃗" " 𝒓 ⃗ ] [𝑝 ⃗" " 𝑞 ⃗" " 𝑟 ⃗ ] = |■8(1&1&1@1&−2&1@𝑎&𝑏&𝑐)| = 1[−2𝑐−𝑏 ] − 1[𝑐−𝑎] + 1[𝑏+2𝑎] = −2𝑐−𝑏−𝑐+𝑎+𝑏+2𝑎 = −3𝑐+3𝑎 Since [𝑝 ⃗" " 𝑞 ⃗" " 𝑟 ⃗ ] = 0 −3𝑐+3𝑎=0 3𝑎=3𝑐 𝑎=𝑐 Now, from (1) a – 2b + c = 0 Putting c = a a – 2b + a = 0 2a – 2b = 0 2a = 2b a = b Therefore, a = b = c So, our vector 𝑟 ⃗ becomes 𝑟 ⃗ = a𝑖 ̂ + b𝑗 ̂ + c𝑘 ̂ = a𝑖 ̂ + a𝑗 ̂ + a𝑘 ̂ Also, given that magnitude of 𝑟 ⃗ is 5√3 units |𝑟 ⃗ | = 5√3 √(𝑎^2+𝑎^2+𝑎^2 ) = 5√3 √(〖3𝑎〗^2 ) = 5√3 √3 𝑎 = 5√3 𝑎 = 5 So, our vector 𝑟 ⃗ becomes 𝑟 ⃗ = a𝑖 ̂ + a𝑗 ̂ + a𝑘 ̂ = 5𝑖 ̂ + 5𝑗 ̂ + 5𝑘 ̂

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo