Check sibling questions

Question 21 (OR 2 nd question)

Find the general solution of the differential equation:

  dx/dy = (y tan⁡y  - x tan⁡y  - xy) / (y tan⁡y)


Transcript

Question 21 (OR 2nd question) Find the general solution of the differential equation: 𝑑𝑥/𝑑𝑦=(𝑦 tan⁡𝑦 − 𝑥 tan⁡𝑦 − 𝑥𝑦)/(𝑦 tan⁡𝑦 ) 𝑑𝑥/𝑑𝑦=(𝑦 tan⁡𝑦 − 𝑥 tan⁡𝑦 − 𝑥𝑦)/(𝑦 tan⁡𝑦 ) 𝑑𝑥/𝑑𝑦=(𝑦 tan⁡𝑦)/(𝑦 tan⁡𝑦 )−(𝑥 tan⁡𝑦 )/(𝑦 tan⁡𝑦 )−𝑥𝑦/(𝑦 tan⁡𝑦 ) 𝑑𝑥/𝑑𝑦=1−𝑥/𝑦−𝑥/tan⁡𝑦 𝑑𝑥/𝑑𝑦+𝑥/𝑦+𝑥/tan⁡𝑦 =1 𝑑𝑥/𝑑𝑦+𝑥(1/𝑦+1/tan⁡𝑦 )=1 Differential equation is of the form 𝑑𝑥/𝑑𝑦 + P1 x = Q1 where P1 = 1/𝑦+1/tan⁡𝑦 & Q1 = 1 Now, IF = 𝑒^∫1▒〖𝑝_1 𝑑𝑦〗 IF = e^∫1▒〖(1/𝑦 + 1/tan⁡𝑦 )𝑑𝑦" " 〗 IF = e^(∫1▒〖1/𝑦 𝑑𝑦〗 +∫1▒〖1/tan⁡𝑦 𝑑𝑦〗) IF = e^(∫1▒〖1/𝑦 𝑑𝑦〗 +∫1▒〖cot⁡𝑦 𝑑𝑦〗) IF = e^(log⁡𝑦 + log⁡sin⁡𝑦 ) IF = e^〖log 〗⁡〖(𝑦 sin⁡𝑦)〗 IF = y sin y Solution is x(IF) = ∫1▒〖(𝑄×𝐼𝐹)𝑑𝑦+𝐶 〗 x (y sin y) =∫1▒〖1×𝑦 sin⁡𝑦 〗 𝑑𝑦+𝐶 xy sin y =∫1▒〖𝑦 sin⁡𝑦 〗 𝑑𝑦+𝐶 (As ∫1▒cot⁡𝑥 𝑑𝑥=log⁡sin⁡𝑥 ) (As log a + log b = log ab) We know that ∫1▒〖𝑓(𝑦) 𝑔⁡(𝑦) 〗 𝑑𝑦=𝑓(𝑦) ∫1▒𝑔(𝑦) 𝑑𝑦−∫1▒(𝑓^′ 𝑦∫1▒𝑔(𝑦) 𝑑𝑦) 𝑑𝑦 Putting f(y) = y and g(y) = sin y xy sin y =𝑦" " ∫1▒sin⁡𝑦 𝑑𝑦−∫1▒(𝑑(𝑦)/𝑑𝑦 ∫1▒〖sin⁡𝑦 𝑑𝑦〗) 𝑑𝑦 xy sin y =−𝑦 cos⁡𝑦 − ∫1▒〖−cos⁡𝑦 𝑑𝑦〗 xy sin y =−𝑦 cos⁡𝑦+ ∫1▒〖cos⁡𝑦 𝑑𝑦〗 xy sin y =−𝑦 cos⁡𝑦+sin⁡𝑦+𝐶 xy sin y =sin⁡𝑦−𝑦 cos⁡𝑦+𝐶 x = (𝒔𝒊𝒏⁡𝒚 − 𝒚 𝒄𝒐𝒔⁡𝒚 + 𝑪" " )/(𝒚 𝐬𝐢𝐧⁡𝒚 )

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo