Check sibling questions

Question 21 (OR 1 st question)

Find the particular solution of the following differential equation.

cos y dx + (1 + 2e -x ) sin y dy = 0; y(0) = π/4


Transcript

Question 21 (OR 1st question) Find the particular solution of the following differential equation. cos y dx + (1 + 2𝑒^(βˆ’π‘₯)) sin y dy = 0; y(0) = πœ‹/4 cos y dx + (1 + 2𝑒^(βˆ’π‘₯)) sin y dy = 0 cos y dx = – (1 + 2𝑒^(βˆ’π‘₯)) sin y dy 𝑑π‘₯/((1 + γ€–2𝑒〗^(βˆ’π‘₯))) = – sin⁑𝑦/cos⁑𝑦 dy 𝑑π‘₯/((1 + γ€–2𝑒〗^(βˆ’π‘₯))) = – tan y dy 𝑑π‘₯/((1 + 2/𝑒^π‘₯ ) ) = – tan y dy 𝑑π‘₯/(((𝑒^π‘₯ + 2)/𝑒^π‘₯ ) ) = – tan y dy (𝑒^π‘₯ 𝑑π‘₯)/((𝑒^π‘₯ + 2) ) = – tan y dy Integrating both sides ∫1β–’(𝑒^π‘₯ 𝑑π‘₯)/((𝑒^π‘₯ + 2) ) = β€“βˆ«1β–’γ€–tan⁑𝑦 𝑑𝑦〗 ∫1β–’(𝑒^π‘₯ 𝑑π‘₯)/((𝑒^π‘₯ + 2) ) = – log⁑〖 |sec⁑𝑦 |γ€— +𝐢 Let ex + 2 = t ex dx = dt ∫1▒𝑑𝑑/𝑑 = – log⁑〖 |sec⁑𝑦 |γ€— +𝐢 log⁑〖 |𝑑|γ€—= – log⁑〖 |sec⁑𝑦 |γ€— +𝐢 Putting back value of t log⁑〖 |𝑒^π‘₯+2|γ€— = – log⁑〖 |sec⁑𝑦 |γ€— +𝐢 log⁑〖 |𝑒^π‘₯+2|γ€—+ log⁑〖 |sec⁑𝑦 |γ€—=𝐢 As log a + log b = log ab log⁑〖 |(𝑒^π‘₯+2)Γ—sec⁑𝑦 |γ€—=𝐢 log⁑〖 |(𝑒^π‘₯+2)Γ—sec⁑𝑦 |γ€—=log⁑𝐾 Cancelling log (𝑒^π‘₯+2)Γ—sec⁑𝑦 = K (𝑒^π‘₯+2)Γ—1/cos⁑𝑦 = K (𝑒^π‘₯+2) = K cos y log⁑〖 |𝑒^π‘₯+2|γ€— = – log⁑〖 |sec⁑𝑦 |γ€— +𝐢 log⁑〖 |𝑒^π‘₯+2|γ€—+ log⁑〖 |sec⁑𝑦 |γ€—=𝐢 As log a + log b = log ab log⁑〖 |(𝑒^π‘₯+2)Γ—sec⁑𝑦 |γ€—=𝐢 log⁑〖 |(𝑒^π‘₯+2)Γ—sec⁑𝑦 |γ€—=log⁑𝐾 Cancelling log (𝑒^π‘₯+2)Γ—sec⁑𝑦 = K (𝑒^π‘₯+2)Γ—1/cos⁑𝑦 = K (𝑒^π‘₯+2) = K cos y We need to find the particular solution for y(0) = πœ‹/4 Putting x = 0, y = πœ‹/4 in (1) (𝑒^π‘₯+2) = K cos y (𝑒^0+2) = K cos πœ‹/4 (1+2) = K cos 45Β° 3 = K Γ— 1/√2 3√2 = K K = 3√2 Putting value of K in (1) (𝑒^π‘₯+2) = K cos y (𝑒^π‘₯+2) = 3√2 cos y Hence, the particular solution is 𝒆^𝒙+𝟐 = 3√𝟐 cos y

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo