Check sibling questions

Question 6

If A = [3 1 -1 2] and I = [1 0 0 1], find k so that A 2 = 5A + kI


Transcript

Question 6 If A = [■8(3&1@−1&2)] and I = [■8(1&0@0&1)], find k so that A2 = 5A + kI Finding A2 A2 = [■8(3&1@−1&2)] [■8(3&1@−1&2)] A2 = [■8(3(3)+1(−1)&3(1)+1(2)@−1(3)+2(−1)&−1(1)+2(2))] A2 = [■8(9−1&3+2@−3−2&−1+4)] A2 = [■8(8&5@−5&3)] Finding 5A 5A = 5[■8(3&1@−1&2)] 5A = [■8(5×3&5×1@5×(−1)&5×2)] 5A = [■8(15&5@−5&10)] Now, our equation is A2 = 5A + kI Putting values [■8(8&5@−5&3)] = [■8(15&5@−5&10)] + k [■8(1&0@0&1)] [■8(8&5@−5&3)] = [■8(15&5@−5&10)] + [■8(𝑘×1&𝑘×0@𝑘×0&𝑘×1)] [■8(8&5@−5&3)] = [■8(15&5@−5&10)] + [■8(𝑘&0@0&𝑘)] [■8(8&5@−5&3)] = [■8(15+𝑘&5+0@−5+0&10+𝑘)] [■8(8&5@−5&3)] = [■8(15+𝑘&5@−5&10+𝑘)] Thus, 8 = 15 + k 8 – 15 = k –7 = k k = –7

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo