Ex 9.5, 19 (MCQ) - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.5, 19 The integrating Factor of the differential equation \(1โ๐ฆ^2 ) ๐๐ฅ/๐๐ฆ+๐ฆ๐ฅ=๐๐ฆ (โ1<๐ฆ<1) is (A) 1/(๐ฆ^2โ1) (B) 1/โ(๐ฆ^2โ1) (C) 1/(1โ๐ฆ^2 ) (D) 1/โ(1โ๐ฆ^2 ) (1โ๐ฆ^2 ) ๐๐ฅ/๐๐ฆ+๐ฆ๐ฅ=๐๐ฆ Dividing both sides by 1 โ y2 ๐๐ฅ/๐๐ฆ + ๐ฆ๐ฅ/(1โ๐ฆ^2 ) = ๐๐ฆ/(1โ๐ฆ^2 ) Differential equation is of the form ๐ ๐/๐ ๐ + P1x = Q1 where P1 = ๐/(๐ โ ๐^๐ ) & Q1 = ๐๐/(๐ โ ๐^๐ ) IF = ๐^โซ1โ๐๐๐ ๐ Finding โซ1โใ๐ท๐ ๐ ๐ใ โซ1โใ๐1 ๐๐ฆ=ใ โซ1โใ๐ฆ/(1โ๐ฆ^2 ) ๐๐ฆ ใ Putting 1 โ y2 = t โ2y dy = dt y dy = (โ1)/2 dt โด Our equation becomes โซ1โใ๐1 ๐๐ฆ= (โ1)/2 ใ โซ1โใ๐๐ก/๐ก ใ โซ1โใ๐1 ๐๐ฆ= (โ1)/2 ใ logโก๐ก Putting back value of t โซ1โใ๐1 ๐๐ฆ= (โ1)/2 ใ logโก(1โ๐ฆ^2) โซ1โใ๐1 ๐๐ฆ=ใ ใlogโก(1โ๐ฆ^2 )ใ^((โ1)/2) โซ1โใ๐ท๐ ๐ ๐= ใ ๐ฅ๐จ๐ ๐/โ(๐ โ ๐^๐ ) Thus, IF = ๐^โซ1โ๐1๐๐ฅ IF = ๐^(๐๐๐ 1/โ(1 โ ๐ฆ^2 )) IF = ๐/โ(๐ โ ๐^๐ ) So, the correct answer is (d)
Ex 9.5
Ex 9.5, 2
Ex 9.5, 3 Important
Ex 9.5, 4
Ex 9.5, 5 Important
Ex 9.5, 6
Ex 9.5, 7 Important
Ex 9.5, 8 Important
Ex 9.5, 9
Ex 9.5, 10
Ex 9.5, 11
Ex 9.5, 12 Important
Ex 9.5, 13
Ex 9.5, 14 Important
Ex 9.5, 15
Ex 9.5, 16 Important
Ex 9.5, 17 Important
Ex 9.5, 18 (MCQ)
Ex 9.5, 19 (MCQ) Important You are here
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo