Check sibling questions


Transcript

Ex 9.5, 19 The integrating Factor of the differential equation \(1โˆ’๐‘ฆ^2 ) ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ+๐‘ฆ๐‘ฅ=๐‘Ž๐‘ฆ (โˆ’1<๐‘ฆ<1) is (A) 1/(๐‘ฆ^2โˆ’1) (B) 1/โˆš(๐‘ฆ^2โˆ’1) (C) 1/(1โˆ’๐‘ฆ^2 ) (D) 1/โˆš(1โˆ’๐‘ฆ^2 ) (1โˆ’๐‘ฆ^2 ) ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ+๐‘ฆ๐‘ฅ=๐‘Ž๐‘ฆ Dividing both sides by 1 โˆ’ y2 ๐‘‘๐‘ฅ/๐‘‘๐‘ฆ + ๐‘ฆ๐‘ฅ/(1โˆ’๐‘ฆ^2 ) = ๐‘Ž๐‘ฆ/(1โˆ’๐‘ฆ^2 ) Differential equation is of the form ๐’…๐’™/๐’…๐’š + P1x = Q1 where P1 = ๐’š/(๐Ÿ โˆ’ ๐’š^๐Ÿ ) & Q1 = ๐’‚๐’š/(๐Ÿ โˆ’ ๐’š^๐Ÿ ) IF = ๐’†^โˆซ1โ–’๐’‘๐Ÿ๐’…๐’š Finding โˆซ1โ–’ใ€–๐‘ท๐Ÿ ๐’…๐’šใ€— โˆซ1โ–’ใ€–๐‘ƒ1 ๐‘‘๐‘ฆ=ใ€— โˆซ1โ–’ใ€–๐‘ฆ/(1โˆ’๐‘ฆ^2 ) ๐‘‘๐‘ฆ ใ€— Putting 1 โˆ’ y2 = t โˆ’2y dy = dt y dy = (โˆ’1)/2 dt โˆด Our equation becomes โˆซ1โ–’ใ€–๐‘ƒ1 ๐‘‘๐‘ฆ= (โˆ’1)/2 ใ€— โˆซ1โ–’ใ€–๐‘‘๐‘ก/๐‘ก ใ€— โˆซ1โ–’ใ€–๐‘ƒ1 ๐‘‘๐‘ฆ= (โˆ’1)/2 ใ€— logโก๐‘ก Putting back value of t โˆซ1โ–’ใ€–๐‘ƒ1 ๐‘‘๐‘ฆ= (โˆ’1)/2 ใ€— logโก(1โˆ’๐‘ฆ^2) โˆซ1โ–’ใ€–๐‘ƒ1 ๐‘‘๐‘ฆ=ใ€— ใ€–logโก(1โˆ’๐‘ฆ^2 )ใ€—^((โˆ’1)/2) โˆซ1โ–’ใ€–๐‘ท๐Ÿ ๐’…๐’š= ใ€— ๐ฅ๐จ๐  ๐Ÿ/โˆš(๐Ÿ โˆ’ ๐’š^๐Ÿ ) Thus, IF = ๐‘’^โˆซ1โ–’๐‘1๐‘‘๐‘ฅ IF = ๐‘’^(๐‘™๐‘œ๐‘” 1/โˆš(1 โˆ’ ๐‘ฆ^2 )) IF = ๐Ÿ/โˆš(๐Ÿ โˆ’ ๐’š^๐Ÿ ) So, the correct answer is (d)

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo