Ex 9.5, 13 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.5, 13 For each of the differential equations given in Exercises 13 to 15 , find a particular solution satisfy the given condition : ππ¦/ππ₯+2π¦ tanβ‘γπ₯=sinβ‘γπ₯;π¦=0γ γ when π₯= π/3 ππ¦/ππ₯+2π¦ tanβ‘γπ₯=sinβ‘π₯ γ Differential equation is of the form ππ¦/ππ₯ + Py = Q π π/π π + 2y tan x = sin x Where P = 2 tan x & Q = sin x Finding Integrating factor IF = π^β«1βγπ ππ₯γ IF = π^β«1βγ2 tanβ‘π₯ ππ₯γ IF = e2 log sec x IF = π^logβ‘sec^2β‘π₯ IF = sec2 x Solution is y (IF) = β«1βγ(πΓπΌπΉ)ππ₯+πγ y (sec2 x) = β«1βγπππβ‘π γπππγ^πβ‘π π π+πγ y sec2 x = β«1βγsinβ‘π₯ 1/cos^2β‘π₯ γ dx + C y sec2 x = β«1βγsinβ‘π₯/πππ β‘π₯ Γ1/πππ β‘π₯ γ dx + C y sec2 x = β«1βtanβ‘γπ₯ secβ‘γπ₯ γ γ dx + C y sec2 x = secβ‘"x + C " y = secβ‘γπ₯ γ/sec^2β‘π₯ + π/sec^2β‘π₯ y = cos x + C cos2 x Putting x = π /π & y = 0 0 = cos π/3 + C cos2 π/3 0 = 1/2 + C (1/2)^2 (β1)/2 = C (1/4) (β4)/2 = C C = β2 Putting value of C in (1) y = cos x + C cos2 x y = cos x β 2 cos2 x
Ex 9.5
Ex 9.5, 2
Ex 9.5, 3 Important
Ex 9.5, 4
Ex 9.5, 5 Important
Ex 9.5, 6
Ex 9.5, 7 Important
Ex 9.5, 8 Important
Ex 9.5, 9
Ex 9.5, 10
Ex 9.5, 11
Ex 9.5, 12 Important
Ex 9.5, 13 You are here
Ex 9.5, 14 Important
Ex 9.5, 15
Ex 9.5, 16 Important
Ex 9.5, 17 Important
Ex 9.5, 18 (MCQ)
Ex 9.5, 19 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo