Check sibling questions


Transcript

Ex 9.5, 7 For each of the differential equation given in Exercises 1 to 12, find the general solution : π‘₯π‘™π‘œπ‘”π‘₯ 𝑑𝑦/𝑑π‘₯+𝑦=2/π‘₯ π‘™π‘œπ‘”π‘₯ Step 1: Put in form 𝑑𝑦/𝑑π‘₯ + Py = Q xlog x 𝑑𝑦/𝑑π‘₯ + y = 2/π‘₯ log x Dividing by x log x, 𝑑𝑦/𝑑π‘₯+𝑦" Γ— " 1/(π‘₯ log⁑π‘₯ ) = 2/π‘₯ π‘™π‘œπ‘” π‘₯" Γ— " 1/(π‘₯ log⁑π‘₯ ) π’…π’š/𝒅𝒙 + (𝟏/(𝒙 π’π’π’ˆβ‘π’™ ))π’š=𝟐/𝒙^𝟐 Step 2: Find P and Q Comparing (1) with 𝑑𝑦/𝑑π‘₯ + Py = Q P = 𝟏/(𝒙 π’π’π’ˆβ‘π’™ ) & Q = 𝟐/π’™πŸ Step 3: Find Integration factor, I.F IF = e^∫1▒〖𝑝 𝑑π‘₯γ€— IF = 𝐞^∫1β–’γ€–πŸ/(𝒙 π₯𝐨𝐠⁑𝒙 ) 𝒅𝒙〗 Let t = log x dt = 1/π‘₯ dx dx = x dt So, IF = e^∫1β–’γ€–1/(π‘₯ 𝑑) Γ— π‘₯𝑑𝑑〗 IF = e^∫1β–’γ€–1/𝑑 𝑑𝑑〗 IF = e^log⁑〖|𝑑|γ€— IF = |𝒕| Putting back t = log x IF = |log x| IF = log x Step 4: Solution of the equation y Γ— I.F = ∫1▒〖𝑄×𝐼.𝐹. 𝑑π‘₯+𝐢〗 Putting values, y Γ— log x = ∫1β–’πŸ/π’™πŸ . log x. dx + C Let I = 2 ∫1β–’π’π’π’ˆβ‘γ€–π’™ 𝒙^(βˆ’πŸ) 𝒅𝒙〗 Solving I I = 2 ∫1β–’π’π’π’ˆβ‘γ€–π’™ 𝒙^(βˆ’πŸ) 𝒅𝒙〗 I = 2["log x. " ∫1▒〖𝒙^(βˆ’πŸ) π’…π’™βˆ’βˆ«1β–’ 𝟏/𝒙 [∫1β–’γ€– 𝒙^(βˆ’πŸ) 𝒅𝒙〗] γ€— 𝒅𝒙" " ] I = 2 ["log x . " π‘₯^(βˆ’1)/((βˆ’1)) " βˆ’ " ∫1β–’γ€– 1/π‘₯γ€— " . " ((π‘₯^(βˆ’1)))/((βˆ’1)) ".dx " ] = 2["βˆ’ log x. " 1/π‘₯ " + " ∫1β–’γ€–1/π‘₯^2 .𝑑π‘₯γ€—] = 2[(βˆ’1)/π‘₯ " .log x βˆ’ " 1/π‘₯] = (βˆ’πŸ)/𝒙 (1 + log x) Putting value of I in (2) y log x = I + C y. log x = (βˆ’πŸ)/𝒙 (1 + log x) + C Which is the general solution of the given equation.

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo