Check sibling questions


Transcript

Question 19 Show that the lines (๐‘ฅ โˆ’ ๐‘Ž + ๐‘‘)/(๐›ผ โˆ’ ๐›ฟ) = (๐‘ฆ โˆ’ ๐‘Ž)/๐›ผ = (๐‘ง โˆ’ ๐‘Ž โˆ’ ๐‘‘)/(๐›ผ + ๐›ฟ) nd (๐‘ฅ โˆ’ ๐‘ + ๐‘)/(๐›ฝ โˆ’ ๐›พ) = (๐‘ฆ โˆ’ ๐‘)/๐›ฝ = (๐‘ง โˆ’ ๐‘ โˆ’ ๐‘)/(๐›ฝ + ๐›พ) are coplanar.Two lines (๐‘ฅ โˆ’ ๐‘ฅ_1)/๐‘Ž_1 = (๐‘ฆ โˆ’ ๐‘ฆ_1)/๐‘_1 = (๐‘ง โˆ’ ๐‘ง_1)/๐‘_1 and (๐‘ฅ โˆ’ ๐‘ฅ_2)/๐‘Ž_2 = (๐‘ฆ โˆ’ ๐‘ฆ_2)/๐‘_2 = (๐‘ง โˆ’ ๐‘ง_2)/๐‘_2 are coplanar if |โ– 8(๐’™_๐Ÿโˆ’ ๐’™_๐Ÿ&๐’š_๐Ÿโˆ’๐’š_๐Ÿ&๐’›_๐Ÿโˆ’๐’›_๐Ÿ@๐’‚_๐Ÿ&๐’ƒ_๐Ÿ&๐’„_๐Ÿ@๐’‚_๐Ÿ&๐’ƒ_๐Ÿ&๐’„_๐Ÿ )| = 0 (๐’™ โˆ’ ๐’‚ + ๐’…)/(๐œถ โˆ’ ๐œน) = (๐’š โˆ’ ๐’‚)/๐œถ = (๐’› โˆ’ ๐’‚ โˆ’ ๐’…)/(๐œถ + ๐œน) (๐‘ฅ โˆ’ (๐‘Ž โˆ’ ๐‘‘))/(๐›ผ โˆ’ ๐›ฟ) = (๐‘ฆ โˆ’ ๐‘Ž)/๐›ผ = (๐‘ง โˆ’ (๐‘Ž + ๐‘‘))/(๐›ผ + ๐›ฟ) Comparing (๐‘ฅ โˆ’ ๐‘ฅ_1)/๐‘Ž_1 = (๐‘ฆ โˆ’ ๐‘ฆ_1)/๐‘_1 = (๐‘ง โˆ’ ๐‘ง_1)/๐‘_1 ๐‘ฅ_1 = ๐‘Ž โˆ’ d , ๐‘ฆ_1= ๐‘Ž , ๐‘ง_1= ๐‘Ž + d & ๐‘Ž_1=๐›ผโˆ’๐›ฟ, ๐‘_1= ๐›ผ, ๐‘_1= ๐›ผ+๐›ฟ (๐’™ โˆ’ ๐’ƒ + ๐’„)/(๐œท โˆ’ ๐œธ) = (๐’š โˆ’ ๐’ƒ)/๐œท = (๐’› โˆ’ ๐’ƒ โˆ’ ๐’„)/(๐œท + ๐œธ) (๐‘ฅ โˆ’ (๐‘ โˆ’ ๐‘))/(๐›ฝ โˆ’ ๐›พ) = (๐‘ฆ โˆ’ ๐‘)/๐›ฝ = (๐‘ง โˆ’ (๐‘ + ๐‘))/(๐›ฝ + ๐›พ) Comparing (๐‘ฅ โˆ’ ๐‘ฅ_2)/๐‘Ž_2 = (๐‘ฆ โˆ’ ๐‘ฆ_2)/๐‘_2 = (๐‘ง โˆ’ ๐‘ง_1)/๐‘_2 ๐‘ฅ_2 = ๐‘ โˆ’ c , ๐‘ฆ_2= ๐‘ , ๐‘ง_2= ๐‘ + c & ๐‘Ž_2 = ๐›ฝโˆ’๐›พ, ๐‘_2 = ๐›ฝ, ๐‘_2 = ๐›ฝ + ๐›พ Now, |โ– 8(๐‘ฅ_2โˆ’๐‘ฅ_1&๐‘ฆ_2โˆ’๐‘ฆ_1&๐‘ง_2โˆ’๐‘ง_1@๐‘Ž_1&๐‘_1&๐‘_1@๐‘Ž_2&๐‘_2&๐‘_2 )| = |โ– 8(๐‘โˆ’๐‘โˆ’๐‘Ž + ๐‘‘&๐‘โˆ’๐‘Ž&๐‘+๐‘โˆ’๐‘Žโˆ’๐‘‘@๐›ผโˆ’๐›ฟ&๐›ผ&๐›ผ+๐›ฟ@๐›ฝโˆ’๐›พ&๐›ฝ&๐›ฝ+๐›พ)| Adding Column 3 to Column 1, = |โ– 8(๐‘โˆ’๐‘โˆ’๐‘Ž + ๐‘‘+(๐‘+๐‘โˆ’๐‘Žโˆ’๐‘‘)&๐‘โˆ’๐‘Ž&๐‘+๐‘โˆ’๐‘Žโˆ’๐‘‘@๐›ผโˆ’๐›ฟ+(๐›ผ+๐›ฟ)&๐›ผ&๐›ผ+๐›ฟ@๐›ฝโˆ’๐›พ+(๐›ฝ+๐›พ)&๐›ฝ&๐›ฝ+๐›พ)| = |โ– 8(2(๐‘โˆ’๐‘Ž)&๐‘โˆ’๐‘Ž&๐‘+๐‘โˆ’๐‘Žโˆ’๐‘‘@2๐›ผ&๐›ผ&๐›ผ+๐›ฟ@2๐›ฝ&๐›ฝ&๐›ฝ+๐›พ)| Taking 2 common from Column 1 = 2 |โ– 8(๐‘ โˆ’ ๐‘Ž&๐‘ โˆ’ ๐‘Ž&๐‘ + ๐‘ โˆ’ ๐‘Ž โˆ’ ๐‘‘@๐›ผ&๐›ผ&๐›ผ + ๐›ฟ@๐›ฝ&๐›ฝ&๐›ฝ +๐›พ)| = 2 ร— 0 = 0 Therefore, the given two lines are coplanar. Since Columns 1 and 2 are same, The value of determinant is zero.

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo