Check sibling questions


Transcript

Question 13 Find the angle between the two planes 3x โ€“ 6y + 2z = 7 and 2x + 2y โ€“ 2z =5.Angle between two planes A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is given by cos ฮธ = |(๐‘จ_๐Ÿ ๐‘จ_๐Ÿ + ๐‘ฉ_๐Ÿ ๐‘ฉ_๐Ÿ + ๐‘ช_๐Ÿ ๐‘ช_๐Ÿ)/(โˆš(ใ€–๐‘จ_๐Ÿใ€—^๐Ÿ + ใ€–๐‘ฉ_๐Ÿใ€—^๐Ÿ + ใ€–๐‘ช_๐Ÿใ€—^๐Ÿ ) โˆš(ใ€–๐‘จ_๐Ÿใ€—^๐Ÿ + ใ€–๐‘ฉ_๐Ÿใ€—^๐Ÿ + ใ€–๐‘ช_๐Ÿใ€—^๐Ÿ ))| Given the two planes are 3x โˆ’ 6y + 2z = 7 Comparing with A1x + B1y + C1z = d1 A1 = 3 , B1 = โ€“6 , C1 = 2 , ๐‘‘_1= 7 2x + 2y โˆ’ 2z = 5 Comparing with A2x + B2y + C2z = d2 A2 = 2 , B2 = 2 , C2 = โ€“2 , ๐‘‘_2= 5 So, cos ฮธ = |((3 ร— 2) + (โˆ’6 ร— 2) + (2 ร— โˆ’2))/(โˆš(3^2 + ใ€–(โˆ’6)ใ€—^2 + 2^2 ) โˆš(2^2 + 2^2 + ใ€–(โˆ’2)ใ€—^2 ))| = |(6 + (โˆ’12) + (โˆ’4))/(โˆš(9 + 36 + 4) ร—โˆš(4 + 4 + 4))| = |(โˆ’10)/(โˆš(49 ) ร—โˆš12)| = |(โˆ’10)/(7 ร—โˆš(4ร—3))| = 10/(7 ร— 2 ร— โˆš3) = 5/(7โˆš3) = 5/(7โˆš3) ร— โˆš3/โˆš3 = (5โˆš3)/21 So, cos ฮธ = (5โˆš3)/21 โˆด ฮธ = ใ€–๐’„๐’๐’”ใ€—^(โˆ’๐Ÿ) ((๐Ÿ“โˆš๐Ÿ‘)/๐Ÿ๐Ÿ) Therefore, the angle between the two planes is ใ€–๐‘๐‘œ๐‘ ใ€—^(โˆ’1) ((5โˆš3)/21) E

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo