Last updated at Dec. 16, 2024 by Teachoo
Example 10 Find the distance between the lines ๐_1 and ๐_2 given by ๐ โ = ๐ ฬ + 2๐ ฬ โ 4๐ ฬ + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ ) and ๐ โ = 3๐ ฬ + 3๐ ฬ โ 5๐ ฬ + ฮผ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ)Distance between two parallel lines with vector equations ๐ โ = (๐_1 ) โ + ๐๐ โ and ๐ โ = (๐_2 ) โ + ๐๐ โ is |(๐ โ ร ((๐_๐ ) โ โ (๐_๐ ) โ))/|๐ โ | | ๐ โ = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) Comparing with ๐ โ = (๐1) โ + ๐ ๐ โ, (๐1) โ = 1๐ ฬ + 2๐ ฬ โ 4๐ ฬ & ๐ โ = 2๐ ฬ + 3๐ ฬ + 6๐ ฬ ๐ โ = (3๐ ฬ + 3๐ ฬ โ 5๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) Comparing with ๐ โ = (๐2) โ + ๐๐ โ, (๐2) โ = 3๐ ฬ + 3๐ ฬ โ 5๐ ฬ & ๐ โ = 2๐ ฬ + 3๐ ฬ + 6๐ ฬ Now, ((๐๐) โ โ (๐๐) โ) = (3๐ ฬ + 3๐ ฬ โ 5๐ ฬ) โ (1๐ ฬ + 2๐ ฬ โ 4๐ ฬ) = (3 โ 1) ๐ ฬ + (3 โ 2)๐ ฬ + ( โ 5 + 4)๐ ฬ = 2๐ ฬ + 1๐ ฬ โ 1๐ ฬ Magnitude of ๐ โ = โ(22 + 32 + 62) |๐ โ | = โ(4+9+36) = โ49 = 7 Also, ๐ โ ร ((๐๐) โ โ (๐๐) โ) = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@2&3&6@2&1&โ1)| = ๐ ฬ [(3รโ1)โ(1ร6)] โ ๐ ฬ [(2รโ1)โ(2ร6)] + ๐ ฬ [(2ร1)โ(2ร3)] = ๐ ฬ [โ3โ6] โ ๐ ฬ [โ2โ12] + ๐ ฬ [2โ6] = ๐ ฬ (โ9) โ ๐ ฬ (โ14) + ๐ ฬ(โ4) = โ๐๐ ฬ + 14๐ ฬ โ 4๐ ฬ Now, |๐ โ" ร (" (๐๐) โ" โ " (๐๐) โ")" | = โ((โ9)^2+(14)^2+(โ4)^2 ) = โ(81+196+16) = โ๐๐๐ So, Distance = |(๐ โ ร ((๐_2 ) โ โ (๐_1 ) โ))/|๐ โ | | = |โ293/7| = โ๐๐๐/๐ Therefore, the distance between the given two parallel lines is โ293/7.
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important You are here
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo