Last updated at Dec. 16, 2024 by Teachoo
Example 9 Find the shortest distance between the lines l1 and l2 whose vector equations are ๐ โ = ๐ ฬ + ๐ ฬ + ๐(2๐ ฬ โ ๐ ฬ + ๐ ฬ ) and ๐ โ = 2๐ ฬ + ๐ ฬ โ ๐ ฬ + ๐ (3๐ ฬ โ 5๐ ฬ + 2๐ ฬ )Shortest distance between lines ๐ โ = (๐1) โ + ๐ (๐1) โ and ๐ โ = (๐2) โ + ๐(๐2) โ is |(((๐๐) โ ร (๐๐) โ ).((๐๐) โ โ (๐๐) โ ))/|(๐๐) โ ร (๐๐) โ | | ๐ โ = (๐ ฬ + ๐ ฬ) + ๐ (2๐ ฬ โ ๐ ฬ + ๐ ฬ) Comparing with ๐ โ = (๐1) โ + ๐ (๐1) โ (๐๐) โ = 1๐ ฬ + 1๐ ฬ + 0๐ ฬ & (๐๐) โ = 2๐ ฬ โ 1๐ ฬ + 1๐ ฬ ๐ โ = (2๐ ฬ + ๐ ฬ โ ๐ ฬ) + ๐ (3๐ ฬ โ 5๐ ฬ + 2๐ ฬ) Comparing with ๐ โ = (๐2) โ + ๐(๐2) โ (๐๐) โ = 2๐ ฬ + 1๐ ฬ โ 1๐ ฬ & (๐๐) โ = 3๐ ฬ โ 5๐ ฬ + 2๐ ฬ Now (๐๐) โ โ (๐๐) โ = (2๐ ฬ + 1๐ ฬ โ 1๐ ฬ) โ (1๐ ฬ + 1๐ ฬ + 0๐ ฬ) = (2 โ 1) ๐ ฬ + (1 โ 1)๐ ฬ + (โ1 โ 0) ๐ ฬ = 1๐ ฬ + 0๐ ฬ โ 1๐ ฬ (๐๐) โ ร (๐๐) โ = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@2& โ1&1@3& โ5&2)| = ๐ ฬ [(โ1ร2)โ(โ5ร1)] โ ๐ ฬ [(2ร2)โ(3ร1)] + ๐ ฬ[(2รโ5)โ(3รโ1)] = ๐ ฬ [โ2+5] โ ๐ ฬ [4โ3] + ๐ ฬ [โ10+3] = ๐ ฬ (3) โ ๐ ฬ (1) + ๐ ฬ(โ7) = 3๐ ฬ โ ๐ ฬ โ 7๐ ฬ Magnitude of ((๐1) โ ร (๐2) โ) = โ(32+(โ1)2+(โ7)^2 ) |(๐๐) โร (๐๐) โ | = โ(9+1+49) = โ๐๐ Also, ((๐๐) โ ร (๐๐) โ) .((๐๐) โ โ (๐๐) โ) = (3๐ ฬ โ ๐ ฬ โ 7๐ ฬ) . (1๐ ฬ + 0๐ ฬ โ 1๐ ฬ) = (3 ร 1) + (โ1 ร 0) + (โ7 ร โ1) = 3 + 0 + 7 = 10 Therefore, Shortest distance = |(((๐1) โ ร (๐2) โ ).((๐2) โ โ (๐1) โ ))/|(๐1) โ ร (๐2) โ | | = |10/โ59| = ๐๐/โ๐๐
Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9 You are here
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo