Check sibling questions


Transcript

Example 6 Find the vector and the Cartesian equations of the line through the point (5, 2, โ€“ 4) and which is parallel to the vector 3๐‘– ฬ‚ + 2๐‘— ฬ‚ โ€“ 8๐‘˜ ฬ‚ . Vector equation Equation of a line passing through a point with position vector ๐‘Ž โƒ— , and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Since line passes through (5, 2, โˆ’4) ๐’‚ โƒ— = 5๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚ Since line is parallel to 3๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 8๐’Œ ฬ‚ ๐’ƒ โƒ— = 3๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 8๐‘˜ ฬ‚ Equation of line ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— ๐’“ โƒ— = (5๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚) + ๐œ† (3๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 8๐’Œ ฬ‚) Cartesian equation Equation of a line passing through a point (x, y, z) and parallel to a line with direction ratios a, b, c is (๐’™ โˆ’ ๐’™๐Ÿ)/๐’‚ = (๐’š โˆ’ ๐’š๐Ÿ)/๐’ƒ = (๐’› โˆ’ ๐’›๐Ÿ)/๐’„ Since line passes through (5, 2, โˆ’4) ๐’™1 = 5, y1 = 2 , z1 = โˆ’4 Also, line is parallel to 3๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’8๐’Œ ฬ‚ , ๐’‚ = 3, b = 2, c = โˆ’8 Equation of line in Cartesian form is (๐‘ฅ โˆ’ ๐‘ฅ1)/๐‘Ž = (๐‘ฆ โˆ’ ๐‘ฆ1)/๐‘ = (๐‘ง โˆ’ ๐‘ง1)/๐‘ (๐‘ฅ โˆ’ 5)/3 = (๐‘ฆ โˆ’ 2)/2 = (๐‘ง โˆ’ (โˆ’4))/( โˆ’8) (๐’™ โˆ’ ๐Ÿ“)/๐Ÿ‘ = (๐’š โˆ’ ๐Ÿ)/๐Ÿ = (๐’› + ๐Ÿ’)/(โˆ’๐Ÿ–)

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo