Check sibling questions


Transcript

Example 2 If a line has direction ratios 2, โ€“ 1, โ€“ 2, determine its direction cosines.If direction ratios of a line are a, b, c direction cosines are ๐’‚/โˆš(๐’‚^๐Ÿ + ๐’ƒ^๐Ÿ + ๐’„^๐Ÿ ) , ๐’ƒ/โˆš(๐’‚^๐Ÿ + ๐’ƒ^๐Ÿ + ๐’„^๐Ÿ ) , ๐’„/โˆš(๐’‚^๐Ÿ + ๐’ƒ^๐Ÿ + ๐’„^๐Ÿ ) Given, Direction ratios = 2, โˆ’1, โˆ’2 โˆด ๐‘Ž = 2, b = โˆ’1, c = โˆ’2 Also, โˆš(๐’‚^๐Ÿ + ๐’ƒ^๐Ÿ + ๐’„^๐Ÿ ) = โˆš(22 + (โˆ’1)2 + (โˆ’2)2) = โˆš(4 + 1 + 4) = โˆš9 = 3 Direction cosines = ๐‘Ž/โˆš(๐‘Ž^2 + ๐‘^2 + ๐‘^2 ) , ๐‘/โˆš(๐‘Ž^2 + ๐‘^2 + ๐‘^2 ) , ๐‘/โˆš(๐‘Ž^2 + ๐‘^2 + ๐‘^2 ) = ๐Ÿ/๐Ÿ‘ , (โˆ’๐Ÿ)/๐Ÿ‘ , (โˆ’๐Ÿ)/๐Ÿ‘

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo