Last updated at Feb. 24, 2025 by Teachoo
Misc 5 (Method 1) Find the vector equation of the line passing through the point (1, 2, โ4) and perpendicular to the two lines: (๐ฅ โ 8)/3 = (๐ฆ + 19)/(โ16) = (๐ง โ 10)/7 and (๐ฅ โ 15)/3 = (๐ฆ โ 29)/8 = (๐ง โ 5)/(โ5) The vector equation of a line passing through a point with position vector ๐ โ and parallel to a vector ๐ โ is ๐ โ = ๐ โ + ๐๐ โ The line passes through (1, 2, โ4) So, ๐ โ = 1๐ ฬ + 2๐ ฬ โ 4๐ ฬ Given, line is perpendicular to both lines โด ๐ โ is perpendicular to both lines We know that ๐ฅ โ ร ๐ฆ โ is perpendicular to both ๐ฅ โ & ๐ฆ โ So, ๐ โ is cross product of both lines (๐ฅ โ 8)/3 = (๐ฆ + 19)/(โ16) = (๐ง โ 10)/7 and (๐ฅ โ 15)/3 = (๐ฆ โ 29)/8 = (๐ง โ 5)/(โ5) Required normal = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@3&โ16&7@3&8&โ5)| = ๐ ฬ (โ16(โ5) โ 8(7)) โ ๐ ฬ (3(-5) โ 3(7)) + ๐ ฬ(3(8) โ 3(โ16)) = ๐ ฬ (80 โ 56) โ ๐ ฬ (โ15 โ 21) + ๐ ฬ(24 + 48) = 24๐ ฬ + 36๐ ฬ + 72๐ ฬ Thus, ๐ โ = 24๐ ฬ + 36๐ ฬ + 72๐ ฬ Now, Putting value of ๐ โ & ๐ โ in formula ๐ โ = ๐ โ + ๐๐ โ โด ๐ โ = (1๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (24๐ ฬ + 36๐ ฬ + 72๐ ฬ) = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐12 (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) Therefore, the equation of the line is (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ). Misc 5 (Method 2) Find the vector equation of the line passing through the point (1, 2, โ4) and perpendicular to the two lines: (๐ฅ โ 8)/3 = (๐ฆ + 19)/(โ16) = (๐ง โ 10)/7 and (๐ฅ โ 15)/3 = (๐ฆ โ 29)/8 = (๐ง โ 5)/(โ5) The vector equation of a line passing through a point with position vector ๐ โ and parallel to a vector ๐ โ is ๐ โ = ๐ โ + ๐๐ โ The line passes through (1, 2, โ4) So, ๐ โ = 1๐ ฬ + 2๐ ฬ โ 4๐ ฬ Let ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ Two lines with direction ratios ๐1 , ๐1 , ๐1 & ๐2 , ๐2 , ๐2 are perpendicular if ๐๐ ๐๐ + ๐๐๐๐ + ๐๐ ๐๐ = 0 Given, line ๐ โ is perpendicular to (๐ฅ โ 8)/3 = (๐ฆ + 19)/16 = (๐ง โ 10)/7 and (๐ฅ โ 15)/3 = (๐ฆ โ 29)/8 = (๐ง โ 5)/( โ 5) So, 3x โ 16y + 7z = 0 and 3x + 8y โ 5z = 0 ๐ฅ/(80 โ 56 ) = ๐ฆ/(21 โ ( โ15) ) = ๐ง/(24 โ ( โ48) ) ๐ฅ/(24 ) = ๐ฆ/36 = ๐ง/72 ๐ฅ/2 = ๐ฆ/3 = ๐ง/6 = k Hence, x = 2k , y = 3k , & z = 6k Thus, ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ = 2k๐ ฬ + 3k๐ ฬ + 6k๐ ฬ Now, Putting value of ๐ โ & ๐ โ in formula ๐ โ = ๐ โ + ๐๐ โ โด ๐ โ = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (2k๐ ฬ + 3k๐ ฬ + 6k๐ ฬ) = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐k (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) = (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐ (2๐ ฬ + 3๐ ฬ + 6๐ ฬ) Therefore, the equation of the line is (๐ ฬ + 2๐ ฬ โ 4๐ ฬ) + ๐(2๐ ฬ + 3๐ ฬ + 6๐ ฬ)
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important
Misc 5 Important You are here
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo