Check sibling questions

 


Transcript

Misc 5 (Method 1) Find the vector equation of the line passing through the point (1, 2, โ€“4) and perpendicular to the two lines: (๐‘ฅ โˆ’ 8)/3 = (๐‘ฆ + 19)/(โˆ’16) = (๐‘ง โˆ’ 10)/7 and (๐‘ฅ โˆ’ 15)/3 = (๐‘ฆ โˆ’ 29)/8 = (๐‘ง โˆ’ 5)/(โˆ’5) The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— The line passes through (1, 2, โˆ’4) So, ๐’‚ โƒ— = 1๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚ Given, line is perpendicular to both lines โˆด ๐‘ โƒ— is perpendicular to both lines We know that ๐‘ฅ โƒ— ร— ๐‘ฆ โƒ— is perpendicular to both ๐‘ฅ โƒ— & ๐‘ฆ โƒ— So, ๐’ƒ โƒ— is cross product of both lines (๐‘ฅ โˆ’ 8)/3 = (๐‘ฆ + 19)/(โˆ’16) = (๐‘ง โˆ’ 10)/7 and (๐‘ฅ โˆ’ 15)/3 = (๐‘ฆ โˆ’ 29)/8 = (๐‘ง โˆ’ 5)/(โˆ’5) Required normal = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@3&โˆ’16&7@3&8&โˆ’5)| = ๐‘– ฬ‚ (โ€“16(โˆ’5) โ€“ 8(7)) โ€“ ๐‘— ฬ‚ (3(-5) โ€“ 3(7)) + ๐‘˜ ฬ‚(3(8) โ€“ 3(โ€“16)) = ๐‘– ฬ‚ (80 โ€“ 56) โ€“ ๐‘— ฬ‚ (โ€“15 โ€“ 21) + ๐‘˜ ฬ‚(24 + 48) = 24๐’Š ฬ‚ + 36๐’‹ ฬ‚ + 72๐’Œ ฬ‚ Thus, ๐’ƒ โƒ— = 24๐’Š ฬ‚ + 36๐’‹ ฬ‚ + 72๐’Œ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— โˆด ๐‘Ÿ โƒ— = (1๐’Š ฬ‚ + 2๐’‹ ฬ‚ โ€“ 4๐’Œ ฬ‚) + ๐œ† (24๐’Š ฬ‚ + 36๐’‹ ฬ‚ + 72๐’Œ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ โ€“ 4๐‘˜ ฬ‚) + ๐œ†12 (2๐‘– ฬ‚ + 3๐‘— ฬ‚ + 6๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ โ€“ 4๐‘˜ ฬ‚) + ๐œ† (2๐‘– ฬ‚ + 3๐‘— ฬ‚ + 6๐‘˜ ฬ‚) Therefore, the equation of the line is (๐’Š ฬ‚ + 2๐’‹ ฬ‚ โ€“ 4๐’Œ ฬ‚) + ๐œ† (2๐’Š ฬ‚ + 3๐’‹ ฬ‚ + 6๐’Œ ฬ‚). Misc 5 (Method 2) Find the vector equation of the line passing through the point (1, 2, โ€“4) and perpendicular to the two lines: (๐‘ฅ โˆ’ 8)/3 = (๐‘ฆ + 19)/(โˆ’16) = (๐‘ง โˆ’ 10)/7 and (๐‘ฅ โˆ’ 15)/3 = (๐‘ฆ โˆ’ 29)/8 = (๐‘ง โˆ’ 5)/(โˆ’5) The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— The line passes through (1, 2, โˆ’4) So, ๐’‚ โƒ— = 1๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚ Let ๐’ƒ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ Two lines with direction ratios ๐‘Ž1 , ๐‘1 , ๐‘1 & ๐‘Ž2 , ๐‘2 , ๐‘2 are perpendicular if ๐’‚๐Ÿ ๐’‚๐Ÿ + ๐’ƒ๐Ÿ๐’ƒ๐Ÿ + ๐’„๐Ÿ ๐’„๐Ÿ = 0 Given, line ๐‘ โƒ— is perpendicular to (๐‘ฅ โˆ’ 8)/3 = (๐‘ฆ + 19)/16 = (๐‘ง โˆ’ 10)/7 and (๐‘ฅ โˆ’ 15)/3 = (๐‘ฆ โˆ’ 29)/8 = (๐‘ง โˆ’ 5)/( โˆ’ 5) So, 3x โˆ’ 16y + 7z = 0 and 3x + 8y โˆ’ 5z = 0 ๐‘ฅ/(80 โˆ’ 56 ) = ๐‘ฆ/(21 โˆ’ ( โˆ’15) ) = ๐‘ง/(24 โˆ’ ( โˆ’48) ) ๐‘ฅ/(24 ) = ๐‘ฆ/36 = ๐‘ง/72 ๐‘ฅ/2 = ๐‘ฆ/3 = ๐‘ง/6 = k Hence, x = 2k , y = 3k , & z = 6k Thus, ๐’ƒ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ = 2k๐’Š ฬ‚ + 3k๐’‹ ฬ‚ + 6k๐’Œ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— โˆด ๐‘Ÿ โƒ— = (๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚) + ๐œ† (2k๐‘– ฬ‚ + 3k๐‘— ฬ‚ + 6k๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚) + ๐œ†k (2๐‘– ฬ‚ + 3๐‘— ฬ‚ + 6๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ โˆ’ 4๐‘˜ ฬ‚) + ๐œ† (2๐‘– ฬ‚ + 3๐‘— ฬ‚ + 6๐‘˜ ฬ‚) Therefore, the equation of the line is (๐’Š ฬ‚ + 2๐’‹ ฬ‚ โˆ’ 4๐’Œ ฬ‚) + ๐œ†(2๐’Š ฬ‚ + 3๐’‹ ฬ‚ + 6๐’Œ ฬ‚)

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo