Check sibling questions


Transcript

Question 15 (Method 1) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 . The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Given, line is parallel to both planes โˆด Line is perpendicular to normal of both planes. i.e. ๐‘ โƒ— is perpendicular to normal of both planes. The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Given, line is parallel to both planes โˆด Line is perpendicular to normal of both planes. i.e. ๐‘ โƒ— is perpendicular to normal of both planes. We know that ๐‘Ž โƒ— ร— ๐‘ โƒ— is perpendicular to both ๐‘Ž โƒ— & ๐‘ โƒ— So, ๐‘ โƒ— is cross product of normal of planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 Required normal = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@1&โˆ’1&2@3&1&1)| = ๐‘– ฬ‚ (โ€“1(1) โ€“ 1(2)) โ€“ ๐‘— ฬ‚ (1(1) โ€“ 3(2)) + ๐‘˜ ฬ‚(1(1) โ€“ 3(โ€“1)) = ๐‘– ฬ‚ (โ€“1 โ€“ 2) โ€“ ๐‘— ฬ‚ (1 โ€“ 6) + ๐‘˜ ฬ‚(1 + 3) = โ€“3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚ Thus, ๐‘ โƒ— = โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— = (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚) Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— = (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚) Question 15 (Method 2) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + 2 ๐‘˜ ฬ‚) = 5 and ๐‘Ÿ โƒ— . (3๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 6 . The vector equation of a line passing through a point with position vector ๐‘Ž โƒ— and parallel to a vector ๐‘ โƒ— is ๐’“ โƒ— = ๐’‚ โƒ— + ๐œ†๐’ƒ โƒ— Given, the line passes through (1, 2, 3) So, ๐‘Ž โƒ— = 1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚ Let ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ + ๐‘_3 ๐‘˜ ฬ‚ A line parallel to a plane is perpendicular to the normal of the plane. And two lines ๐‘ โƒ— and ๐‘ž โƒ— are perpendicular if ๐‘ โƒ—.๐‘ž โƒ— = 0 Given, the line is parallel to planes ๐’“ โƒ—.(๐’Š ฬ‚ โˆ’ ๐’‹ ฬ‚ + 2๐’Œ ฬ‚) = 5 Comparing with ๐‘Ÿ โƒ—. (๐‘›1) โƒ— = d1, (๐‘›1) โƒ— = 1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚ Since ๐‘ โƒ— is โŠฅ to (๐‘›1) โƒ—, ๐‘ โƒ—.(๐‘›1) โƒ— = 0 (๐‘1๐‘– ฬ‚ + ๐‘2 ๐‘— ฬ‚ + ๐‘3 ๐‘˜ ฬ‚).(1๐‘– ฬ‚ โˆ’ 1๐‘— ฬ‚ + 2๐‘˜ ฬ‚) = 0 (๐‘"1"ร— 1) + (๐‘"2"ร— โˆ’1) + (๐‘3 ร— 2) = 0 ๐’ƒ1 โˆ’ ๐’ƒ2 + 2๐’ƒ3 = 0 ๐’“ โƒ—.(3๐’Š ฬ‚ + ๐’‹ ฬ‚ + ๐’Œ ฬ‚) = 6 Comparing with ๐‘Ÿ โƒ—. (๐‘›2) โƒ— = d2, (๐‘›2) โƒ— = 3๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Since ๐‘ โƒ— is โŠฅ to (๐‘›2) โƒ—, ๐‘ โƒ—.(๐‘›2) โƒ— = 0 (๐‘1 ๐‘– ฬ‚ + ๐‘2 ๐‘— ฬ‚ + ๐‘3 ๐‘˜ ฬ‚).(3๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚) = 0 (๐‘1 ร— 3) + (๐‘2 ร— 1) + (๐‘3 ร— 1) = 0 3๐’ƒ1 + ๐’ƒ2 + ๐’ƒ3 = 0 So, our equations are ๐‘1 โˆ’ ๐‘2 + 2๐‘3 = 0 3๐‘1 + ๐‘2 + ๐‘3 = 0 Thus, ๐‘ โƒ— = ๐‘_1 ๐‘– ฬ‚ + ๐‘_2 ๐‘— ฬ‚ + ๐‘_3 ๐‘˜ ฬ‚ = โˆ’3k๐‘– ฬ‚ + 5k๐‘— ฬ‚ + 4k๐‘˜ ฬ‚ Now, Putting value of ๐‘Ž โƒ— & ๐‘ โƒ— in formula ๐‘Ÿ โƒ— = ๐‘Ž โƒ— + ๐œ†๐‘ โƒ— โˆด ๐‘Ÿ โƒ— = (1๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ† (โˆ’3k๐‘– ฬ‚ + 5k๐‘— ฬ‚ + 4k๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ†k (โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚) = (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) + ๐œ† (โˆ’3๐‘– ฬ‚ + 5๐‘— ฬ‚ + 4๐‘˜ ฬ‚) Therefore, the equation of the line is (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) + ๐œ† (โˆ’3๐’Š ฬ‚ + 5๐’‹ ฬ‚ + 4๐’Œ ฬ‚).

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo