Last updated at Dec. 16, 2024 by Teachoo
Question 15 (Method 1) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐ โ . (๐ ฬ โ ๐ ฬ + 2 ๐ ฬ) = 5 and ๐ โ . (3๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 . The vector equation of a line passing through a point with position vector ๐ โ and parallel to a vector ๐ โ is ๐ โ = ๐ โ + ๐๐ โ Given, the line passes through (1, 2, 3) So, ๐ โ = 1๐ ฬ + 2๐ ฬ + 3๐ ฬ Given, line is parallel to both planes โด Line is perpendicular to normal of both planes. i.e. ๐ โ is perpendicular to normal of both planes. The vector equation of a line passing through a point with position vector ๐ โ and parallel to a vector ๐ โ is ๐ โ = ๐ โ + ๐๐ โ Given, the line passes through (1, 2, 3) So, ๐ โ = 1๐ ฬ + 2๐ ฬ + 3๐ ฬ Given, line is parallel to both planes โด Line is perpendicular to normal of both planes. i.e. ๐ โ is perpendicular to normal of both planes. We know that ๐ โ ร ๐ โ is perpendicular to both ๐ โ & ๐ โ So, ๐ โ is cross product of normal of planes ๐ โ . (๐ ฬ โ ๐ ฬ + 2 ๐ ฬ) = 5 and ๐ โ . (3๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 Required normal = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@1&โ1&2@3&1&1)| = ๐ ฬ (โ1(1) โ 1(2)) โ ๐ ฬ (1(1) โ 3(2)) + ๐ ฬ(1(1) โ 3(โ1)) = ๐ ฬ (โ1 โ 2) โ ๐ ฬ (1 โ 6) + ๐ ฬ(1 + 3) = โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ Thus, ๐ โ = โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ Now, Putting value of ๐ โ & ๐ โ in formula ๐ โ = ๐ โ + ๐๐ โ = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ) Now, Putting value of ๐ โ & ๐ โ in formula ๐ โ = ๐ โ + ๐๐ โ = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ) Question 15 (Method 2) Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes ๐ โ . (๐ ฬ โ ๐ ฬ + 2 ๐ ฬ) = 5 and ๐ โ . (3๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 . The vector equation of a line passing through a point with position vector ๐ โ and parallel to a vector ๐ โ is ๐ โ = ๐ โ + ๐๐ โ Given, the line passes through (1, 2, 3) So, ๐ โ = 1๐ ฬ + 2๐ ฬ + 3๐ ฬ Let ๐ โ = ๐_1 ๐ ฬ + ๐_2 ๐ ฬ + ๐_3 ๐ ฬ A line parallel to a plane is perpendicular to the normal of the plane. And two lines ๐ โ and ๐ โ are perpendicular if ๐ โ.๐ โ = 0 Given, the line is parallel to planes ๐ โ.(๐ ฬ โ ๐ ฬ + 2๐ ฬ) = 5 Comparing with ๐ โ. (๐1) โ = d1, (๐1) โ = 1๐ ฬ โ 1๐ ฬ + 2๐ ฬ Since ๐ โ is โฅ to (๐1) โ, ๐ โ.(๐1) โ = 0 (๐1๐ ฬ + ๐2 ๐ ฬ + ๐3 ๐ ฬ).(1๐ ฬ โ 1๐ ฬ + 2๐ ฬ) = 0 (๐"1"ร 1) + (๐"2"ร โ1) + (๐3 ร 2) = 0 ๐1 โ ๐2 + 2๐3 = 0 ๐ โ.(3๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 Comparing with ๐ โ. (๐2) โ = d2, (๐2) โ = 3๐ ฬ + 1๐ ฬ + 1๐ ฬ Since ๐ โ is โฅ to (๐2) โ, ๐ โ.(๐2) โ = 0 (๐1 ๐ ฬ + ๐2 ๐ ฬ + ๐3 ๐ ฬ).(3๐ ฬ + 1๐ ฬ + 1๐ ฬ) = 0 (๐1 ร 3) + (๐2 ร 1) + (๐3 ร 1) = 0 3๐1 + ๐2 + ๐3 = 0 So, our equations are ๐1 โ ๐2 + 2๐3 = 0 3๐1 + ๐2 + ๐3 = 0 Thus, ๐ โ = ๐_1 ๐ ฬ + ๐_2 ๐ ฬ + ๐_3 ๐ ฬ = โ3k๐ ฬ + 5k๐ ฬ + 4k๐ ฬ Now, Putting value of ๐ โ & ๐ โ in formula ๐ โ = ๐ โ + ๐๐ โ โด ๐ โ = (1๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (โ3k๐ ฬ + 5k๐ ฬ + 4k๐ ฬ) = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐k (โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ) = (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ) Therefore, the equation of the line is (๐ ฬ + 2๐ ฬ + 3๐ ฬ) + ๐ (โ3๐ ฬ + 5๐ ฬ + 4๐ ฬ).
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15 You are here
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo