Last updated at Dec. 16, 2024 by Teachoo
Question 14 (Method 1) Find the distance of the point (โ1, โ5, โ10) from the point of intersection of the line ๐ โ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ + ๐ (3๐ ฬ + 4๐ ฬ + 2๐ ฬ) and the plane ๐ โ . (๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 .Given, the equation of line is ๐ โ = (2๐ ฬ โ ๐ ฬ + 2๐ ฬ) + ๐ (3๐ ฬ + 4๐ ฬ + 2๐ ฬ) and the equation of the plane is ๐ โ.(๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 To find point of intersection of line and plane, Putting value of ๐ โ from equation of line into equation of plane. ["(2" ๐ ฬ" โ " ๐ ฬ" + 2" ๐ ฬ") + ๐ (3" ๐ ฬ" + 4" ๐ ฬ" + 2" ๐ ฬ")" ] . (๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 ["(2" ๐ ฬ" โ 1" ๐ ฬ" + 2" ๐ ฬ+3"๐" ๐ ฬ" + 4๐" ๐ ฬ+2"๐" ๐ ฬ")" ] . (1๐ ฬ โ 1๐ ฬ + 1๐ ฬ) = 5 ["(2 + 3๐) " ๐ ฬ" + (" โ1" + 4๐) " ๐ ฬ+(2+2"๐" )๐ ฬ ] . (1๐ ฬ โ 1๐ ฬ + 1๐ ฬ) = 5 (2 + 3๐) ร 1 + (โ1 + 4๐) ร (โ1) + (2 + 2๐) ร 1 = 5 2 + 3๐ + 1 โ 4๐ + 2 + 2๐ = 5 ๐ + 5 = 5 ๐ = 5 โ 5 ๐ = 0 So, the equation of line is ๐ โ = (2๐ ฬ โ ๐ ฬ + 2๐ ฬ) + ๐ (3๐ ฬ + 4๐ ฬ + 2๐ ฬ) ๐ โ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ Let the point of intersection be (x, y, z) So, ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ x๐ ฬ + y๐ ฬ + z๐ ฬ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ Hence, x = 2 , y = โ1, z = 2 Therefore, the point of intersection is (2, โ1, 2) Now, the distance between two points (๐ฅ_1, ๐ฆ_1, ๐ง_1) and (๐ฅ_2, ๐ฆ_2, ๐ง_2) is โ((๐ฅ_2โ๐ฅ_1 )^2 ใ+ (๐ฆ_2โ๐ฆ_1 )ใ^2+ (๐ง_2โ๐ง_1 )^2 ) Distance between (2, โ1, 2) and (โ1, โ5, โ10) = โ((โ1โ2)^2 ใ+ (โ5+1)ใ^2+ (โ10โ2)^2 ) = โ((โ3)^2 ใ+ (โ4)ใ^2+ (โ12)^2 ) = โ(9+16+144) = โ169 = 13. Question 14 (Method 2) Find the distance of the point (โ1, โ5, โ10) from the point of intersection of the line ๐ โ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ + ๐ (3๐ ฬ + 4๐ ฬ + 2๐ ฬ) and the plane ๐ โ . (๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 .Given, the equation of line is ๐ โ = (2๐ ฬ โ ๐ ฬ + 2๐ ฬ) + ๐ (3๐ ฬ + 4๐ ฬ + 2๐ ฬ) Comparing with ๐ โ = ๐ โ + ๐๐ โ , ๐ โ = 2๐ ฬ โ ๐ ฬ + 2๐ ฬ Comparing with ๐ โ = ๐ฅ_1 ๐ ฬ + ๐ฆ_1 ๐ ฬ + ๐ง_1 ๐ ฬ, โด ๐ฅ_1= 2, ๐ฆ_1= โ1, ๐ง_1= 2, ๐ โ = 3๐ ฬ + 4๐ ฬ + 2๐ ฬ Comparing with ๐ โ = ๐๐ ฬ + ๐๐ ฬ + ๐๐ ฬ, โด ๐ = 3, ๐ = 4, ๐ = 2, Equation of line in Cartesian form is (๐ฅ โ ๐ฅ_1)/๐ = (๐ฆ โ ๐ฆ_1)/๐ = (๐ง โ ๐ง_1)/๐ (๐ฅ โ 2)/3 = (๐ฆ โ (โ1))/4 = (๐ง โ 2)/2 (๐ โ ๐)/๐ = (๐ + ๐)/๐ = (๐ โ ๐)/๐ = k So, Also, the equation of plane is ๐ โ.(๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 Comparing with ๐ โ.๐ โ = d, ๐ โ = 1๐ ฬ โ 1๐ ฬ + 1๐ ฬ & d = 5 Comparing ๐ โ with A๐ ฬ + B๐ ฬ + C๐ ฬ, A = 1, B = โ1, C = 1 Equation of plane in Cartesian form is Ax + By + Cz = d 1x โ 1y + 1z = 5 x โ y + z = 5 Let the point of intersection of line and plane be (x, y, z) Putting values of x, y, z in equation of plane, (3k + 2) โ (4k โ 1) + (2k + 2) = 5 3k + 2 โ 4k + 1 + 2k + 2 = 5 k + 5 = 5 โด k = 0 So, x = 3k + 2 = 3 ร 0 + 2 = 2 y = 4k โ 1 = 4 ร 0 โ 1 = โ1 z = 2k + 2 = 2 ร 0 + 2 = 2 Therefore, the point of intersection is (2, โ1, 2). Distance between two points (๐ฅ_1, ๐ฆ_1, ๐ง_1) & (๐ฅ_2, ๐ฆ_2, ๐ง_2) = โ((๐ฅ_2โ๐ฅ_1 )^2 (๐ฆ_2โ๐ฆ_1 )^2+(๐ง_2โ๐ง_1 )^2 ) โด Distance between (2, โ1, 2) and (โ1, โ5, โ10) = โ((โ1โ2)^2+(โ5+1)^2+(โ10โ2)^2 ) = โ((โ3)^2+(โ4)^2+(โ12)^2 ) = โ(9+16+144) = โ169 = 13
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important You are here
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo