Last updated at Dec. 16, 2024 by Teachoo
Question 13 Find the equation of the plane which contains the line of intersection of the planes ๐ โ . (๐ ฬ + 2๐ ฬ + 3๐ ฬ) โ 4 = 0 , ๐ โ . (2๐ ฬ + ๐ ฬ โ ๐ ฬ) + 5 = 0 and which is perpendicular to the plane ๐ โ . (5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) + 8 = 0 .Equation of a plane passing through the intersection of the places A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is (A1x + B1y + C1z โ d1) + ๐ (A2x + B2y + C2z โ d2) = 0 Converting equation of planes to Cartesian form to find A1, B1, C1, d1 & A2, B2, C2, d2 ๐ โ. (๐ ฬ + 2๐ ฬ + 3๐ ฬ) โ 4 = 0 ๐ โ. (๐ ฬ + 2๐ ฬ + 3๐ ฬ) = 4 Putting ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ (x๐ ฬ + y๐ ฬ + z๐ ฬ).(๐ ฬ + 2๐ ฬ + 3๐ ฬ) = 4 (x ร 1) + (y ร 2) + (z ร 3) = 4 1x + 2y + 3z = 4 Comparing with ๐ด_1 "x"+"B1y"+๐ถ_1 "z = d1" ๐ด_1 = 1, ๐ต_1= 2 , ๐ถ_1 = 3 , ๐_1 = 4 ๐ โ. (2๐ ฬ + ๐ ฬ โ ๐ ฬ) + 5 = 0 ๐ โ. (2๐ ฬ + ๐ ฬ โ ๐ ฬ) = โ 5 โ๐ โ. (2๐ ฬ + ๐ ฬ โ ๐ ฬ) = 5 ๐ โ. ( โ2๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 Putting ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ, (x๐ ฬ + y๐ ฬ + z๐ ฬ).(-2๐ ฬ โ ๐ ฬ + ๐ ฬ) = 5 (x รโ 2) + (Y ร โ 1) + (z ร 1) = 5 โ2x โ 1y + 1z = 5 Comparing with ๐ด_2 "x"+ "B2y"+ ๐ถ_2 "z = d2" ๐ด_2 = โ2, ๐ต_2= โ1 , ๐ถ_2 = 1 , ๐_2 = 5 Equation of plane is (A1x + B1y + C1z โ d1) + ๐ (A2x + B2y + C2z = d2) = 0 Putting values (1x + 2y + 3z โ 4) + ๐ ( โ 2x โ 1y + 1z โ 5) = 0 (1 โ 2๐) x + (2 โ ๐)y + (3 + ๐) z + ( โ4 โ 5๐) = 0 Now, the plane is perpendicular to the plane ๐ โ.(5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) + 8 = 0 So, normal to plane ๐ โ will be perpendicular to normal ๐ โ of ๐ โ.(5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) + 8 = 0 Now, ๐ โ.(5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) + 8 = 0 ๐ โ .(5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) = โ8 โ ๐ โ .(5๐ ฬ + 3๐ ฬ โ 6๐ ฬ) = 8 ๐ โ .( โ5๐ ฬ โ 3๐ ฬ + 6๐ ฬ) = 8 Finding direction cosines of ๐ โ & ๐ โ Since, ๐ โ is perpendicular to ๐ โ ๐1 ๐2 + b1 b2 + c1 c2 = 0 (1 โ 2๐) ร โ5 + (2 โ ๐) ร โ3 + (3 + ๐) ร 6 = 0 Theory : Two lines with direction ratios ๐1, b1, c1 and ๐2, b2, c2 are perpendicular if ๐1 ๐2 + b1b2 + c1 c2 = 0 ๐ต โ = (1 โ 2๐) ๐ ฬ + (2 โ ๐) ๐ ฬ + (3 + ๐) ๐ ฬ Direction ratios = 1 โ 2๐, 2 โ ๐, 3 + ๐ โด ๐1 = 1 โ 2๐, b1 = 2 โ ๐, c1 = 3 + ๐ ๐ โ = โ 5๐ ฬ โ 3๐ ฬ + 6๐ ฬ Direction ratios = โ5, โ3, 6 โด ๐2 = โ 5, b2 = โ3, c2 = 6, โ 5 + 10๐ โ 6 + 3๐ + 18 + 6๐ = 0 19๐ + 7 = 0 โด ๐ = (โ๐)/๐๐ Putting value of ๐ in (1), (1 โ 2๐) x + (2 โ ๐)y + (3 + ๐) z + ( โ4 โ 5๐) = 0 (1โ2 ร(โ7)/19) x + (2โ(( โ7)/19)) y + (3+(( โ 7)/19)) z + ( โ4โ5ร(โ7)/19) = 0 (1 + 14/19) x + (2 + 7/19)y + (3 โ 7/19)z + ( โ 4 + 35/19) = 0 33/19 x + 45/19 y + 50/19 z โ 41/19 = 0 1/19 (33x + 45y + 50z โ 41) = 0 33x + 45y + 50z โ 41 = 0
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important You are here
Question 14 Important
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo