Check sibling questions


Transcript

Question 13 Find the equation of the plane which contains the line of intersection of the planes ๐‘Ÿ โƒ— . (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) โ€“ 4 = 0 , ๐‘Ÿ โƒ— . (2๐‘– ฬ‚ + ๐‘— ฬ‚ โ€“ ๐‘˜ ฬ‚) + 5 = 0 and which is perpendicular to the plane ๐‘Ÿ โƒ— . (5๐‘– ฬ‚ + 3๐‘— ฬ‚ โ€“ 6๐‘˜ ฬ‚) + 8 = 0 .Equation of a plane passing through the intersection of the places A1x + B1y + C1z = d1 and A2x + B2y + C2z = d2 is (A1x + B1y + C1z โˆ’ d1) + ๐œ† (A2x + B2y + C2z โ€“ d2) = 0 Converting equation of planes to Cartesian form to find A1, B1, C1, d1 & A2, B2, C2, d2 ๐’“ โƒ—. (๐’Š ฬ‚ + 2๐’‹ ฬ‚ + 3๐’Œ ฬ‚) โˆ’ 4 = 0 ๐‘Ÿ โƒ—. (๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = 4 Putting ๐’“ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚ (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚).(๐‘– ฬ‚ + 2๐‘— ฬ‚ + 3๐‘˜ ฬ‚) = 4 (x ร— 1) + (y ร— 2) + (z ร— 3) = 4 1x + 2y + 3z = 4 Comparing with ๐ด_1 "x"+"B1y"+๐ถ_1 "z = d1" ๐ด_1 = 1, ๐ต_1= 2 , ๐ถ_1 = 3 , ๐‘‘_1 = 4 ๐’“ โƒ—. (2๐’Š ฬ‚ + ๐’‹ ฬ‚ โˆ’ ๐’Œ ฬ‚) + 5 = 0 ๐‘Ÿ โƒ—. (2๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘˜ ฬ‚) = โˆ’ 5 โˆ’๐‘Ÿ โƒ—. (2๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘˜ ฬ‚) = 5 ๐‘Ÿ โƒ—. ( โˆ’2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 5 Putting ๐’“ โƒ— = x๐’Š ฬ‚ + y๐’‹ ฬ‚ + z๐’Œ ฬ‚, (x๐‘– ฬ‚ + y๐‘— ฬ‚ + z๐‘˜ ฬ‚).(-2๐‘– ฬ‚ โˆ’ ๐‘— ฬ‚ + ๐‘˜ ฬ‚) = 5 (x ร—โˆ’ 2) + (Y ร— โˆ’ 1) + (z ร— 1) = 5 โˆ’2x โˆ’ 1y + 1z = 5 Comparing with ๐ด_2 "x"+ "B2y"+ ๐ถ_2 "z = d2" ๐ด_2 = โˆ’2, ๐ต_2= โˆ’1 , ๐ถ_2 = 1 , ๐‘‘_2 = 5 Equation of plane is (A1x + B1y + C1z โˆ’ d1) + ๐œ† (A2x + B2y + C2z = d2) = 0 Putting values (1x + 2y + 3z โˆ’ 4) + ๐œ† ( โˆ’ 2x โˆ’ 1y + 1z โˆ’ 5) = 0 (1 โˆ’ 2๐œ†) x + (2 โˆ’ ๐œ†)y + (3 + ๐œ†) z + ( โˆ’4 โˆ’ 5๐œ†) = 0 Now, the plane is perpendicular to the plane ๐‘Ÿ โƒ—.(5๐‘– ฬ‚ + 3๐‘— ฬ‚ โˆ’ 6๐‘˜ ฬ‚) + 8 = 0 So, normal to plane ๐‘ โƒ— will be perpendicular to normal ๐‘› โƒ— of ๐‘Ÿ โƒ—.(5๐‘– ฬ‚ + 3๐‘— ฬ‚ โˆ’ 6๐‘˜ ฬ‚) + 8 = 0 Now, ๐‘Ÿ โƒ—.(5๐‘– ฬ‚ + 3๐‘— ฬ‚ โˆ’ 6๐‘˜ ฬ‚) + 8 = 0 ๐‘Ÿ โƒ— .(5๐‘– ฬ‚ + 3๐‘— ฬ‚ โˆ’ 6๐‘˜ ฬ‚) = โ€“8 โˆ’ ๐‘Ÿ โƒ— .(5๐‘– ฬ‚ + 3๐‘— ฬ‚ โˆ’ 6๐‘˜ ฬ‚) = 8 ๐‘Ÿ โƒ— .( โˆ’5๐‘– ฬ‚ โˆ’ 3๐‘— ฬ‚ + 6๐‘˜ ฬ‚) = 8 Finding direction cosines of ๐‘ โƒ— & ๐‘› โƒ— Since, ๐‘ โƒ— is perpendicular to ๐‘› โƒ— ๐‘Ž1 ๐‘Ž2 + b1 b2 + c1 c2 = 0 (1 โˆ’ 2๐œ†) ร— โˆ’5 + (2 โˆ’ ๐œ†) ร— โˆ’3 + (3 + ๐œ†) ร— 6 = 0 Theory : Two lines with direction ratios ๐‘Ž1, b1, c1 and ๐‘Ž2, b2, c2 are perpendicular if ๐‘Ž1 ๐‘Ž2 + b1b2 + c1 c2 = 0 ๐‘ต โƒ— = (1 โˆ’ 2๐œ†) ๐’Š ฬ‚ + (2 โˆ’ ๐œ†) ๐’‹ ฬ‚ + (3 + ๐œ†) ๐’Œ ฬ‚ Direction ratios = 1 โˆ’ 2๐œ†, 2 โˆ’ ๐œ†, 3 + ๐œ† โˆด ๐‘Ž1 = 1 โˆ’ 2๐œ†, b1 = 2 โˆ’ ๐œ†, c1 = 3 + ๐œ† ๐’ โƒ— = โˆ’ 5๐’Š ฬ‚ โ€“ 3๐’‹ ฬ‚ + 6๐’Œ ฬ‚ Direction ratios = โˆ’5, โˆ’3, 6 โˆด ๐‘Ž2 = โˆ’ 5, b2 = โˆ’3, c2 = 6, โˆ’ 5 + 10๐œ† โˆ’ 6 + 3๐œ† + 18 + 6๐œ† = 0 19๐œ† + 7 = 0 โˆด ๐œ† = (โˆ’๐Ÿ•)/๐Ÿ๐Ÿ— Putting value of ๐œ† in (1), (1 โˆ’ 2๐œ†) x + (2 โˆ’ ๐œ†)y + (3 + ๐œ†) z + ( โˆ’4 โˆ’ 5๐œ†) = 0 (1โˆ’2 ร—(โˆ’7)/19) x + (2โˆ’(( โˆ’7)/19)) y + (3+(( โˆ’ 7)/19)) z + ( โˆ’4โˆ’5ร—(โˆ’7)/19) = 0 (1 + 14/19) x + (2 + 7/19)y + (3 โˆ’ 7/19)z + ( โˆ’ 4 + 35/19) = 0 33/19 x + 45/19 y + 50/19 z โˆ’ 41/19 = 0 1/19 (33x + 45y + 50z โˆ’ 41) = 0 33x + 45y + 50z โˆ’ 41 = 0

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo