Check sibling questions


Transcript

Question 10 If the points (1, 1 , p) and (โ€“3 , 0, 1) be equidistant from the plane ๐‘Ÿ โƒ—. (3๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 12๐‘˜ ฬ‚) + 13 = 0, then find the value of p. The distance of a point with position vector ๐‘Ž โƒ— from the plane ๐‘Ÿ โƒ—.๐‘› โƒ— = d is |(๐’‚ โƒ—.๐’ โƒ— โˆ’ ๐’…)/|๐’ โƒ— | | Given, the points are The equation of plane is ๐‘Ÿ โƒ—. (3๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 12๐‘˜ ฬ‚) + 13 = 0 ๐‘Ÿ โƒ—.(3๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 12๐‘˜ ฬ‚) = โˆ’13 (1, 1, p) So, (๐‘Ž_1 ) โƒ— = 1๐‘– ฬ‚ + 1๐‘— ฬ‚ + p๐‘˜ ฬ‚ (โˆ’3, 0, 1) So, (๐‘Ž_2 ) โƒ— = โˆ’3๐‘– ฬ‚ + 0๐‘— ฬ‚ + 1๐‘˜ ฬ‚ โ€“๐‘Ÿ โƒ—.(3๐‘– ฬ‚ + 4๐‘— ฬ‚ โˆ’ 12๐‘˜ ฬ‚) = 13 ๐’“ โƒ—.(โ€“3๐’Š ฬ‚ โ€“ 4๐’‹ ฬ‚ + 12๐’Œ ฬ‚) = 13 Comparing with ๐‘Ÿ โƒ—.๐‘› โƒ— = d, ๐‘› โƒ— = โˆ’3๐‘– ฬ‚ โˆ’ 4๐‘— ฬ‚ + 12๐‘˜ ฬ‚ d = 13 Magnitude of ๐‘› โƒ— = โˆš((โˆ’3)^2+(โˆ’4)^2+ใ€–12ใ€—^2 ) |๐‘› โƒ— | = โˆš(9+16+144) = โˆš169 = 13 Distance of point (๐’‚๐Ÿ) โƒ— from plane |((๐‘Ž1) โƒ—"." ๐‘› โƒ—" " โˆ’ ๐‘‘)/|๐‘› โƒ— | | = |((1๐‘– ฬ‚ + 1๐‘— ฬ‚ + ๐‘๐‘˜ ฬ‚ ).(โˆ’3๐‘– ฬ‚โˆ’4๐‘— ฬ‚+12๐‘˜ ฬ‚ )โˆ’13)/13| = |((1ร—โˆ’3)+(1ร—โˆ’4) +(๐‘ร—12)โˆ’13)/13| = |(โˆ’3โˆ’4+12๐‘โˆ’13)/13| = |(12๐‘ โˆ’ 20)/13| Distance of point (๐’‚๐Ÿ) โƒ— from plane |((๐‘Ž2) โƒ—"." ๐‘› โƒ— โˆ’ ๐‘‘)/|๐‘› โƒ— | | = |((โˆ’3๐‘– ฬ‚ +0๐‘— ฬ‚ +1๐‘˜ ฬ‚ ).(โˆ’3๐‘– ฬ‚โˆ’4๐‘— ฬ‚+12๐‘˜ ฬ‚ )โˆ’13)/13| = |((โˆ’3ร—โˆ’3)+(0ร—โˆ’4) +(1ร—12)โˆ’13)/13| = |(9 + 0 +12โˆ’13)/13| = |8/13| = 8/13 Since the plane is equidistance from both the points, |(๐Ÿ๐Ÿ๐’‘ โˆ’ ๐Ÿ๐ŸŽ)/๐Ÿ๐Ÿ‘| = ๐Ÿ–/๐Ÿ๐Ÿ‘ |12๐‘โˆ’20| = 8 (12p โ€“ 20) = ยฑ 8 12p โˆ’ 20 = 8 12p = 8 + 20 12p = 28 p = 28/12 p = 7/3 12p โˆ’ 20 = โˆ’8 12p = โˆ’8 + 20 12p = 12 p = 12/12 p = 1 Answer does not match at end. If mistake, please comment

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo