Last updated at Dec. 16, 2024 by Teachoo
Misc 4 Find the shortest distance between lines ๐ โ = 6๐ ฬ + 2๐ ฬ + 2๐ ฬ + ๐ (๐ ฬ โ 2๐ ฬ + 2๐ ฬ) and ๐ โ = โ4๐ ฬ โ ๐ ฬ + ๐ (3๐ ฬ โ 2๐ ฬ โ 2๐ ฬ) .Shortest distance between lines with vector equations ๐ โ = (๐1) โ + ๐ (๐1) โ and ๐ โ = (๐2) โ + ๐(๐2) โ is |(((๐๐) โ ร (๐๐) โ ).((๐๐) โ โ (๐๐) โ ))/|(๐๐) โ ร (๐๐) โ | | ๐ โ = (6๐ ฬ + 2๐ ฬ + 2๐ ฬ) + ๐ (๐ ฬ โ 2๐ ฬ + 2๐ ฬ) Comparing with ๐ โ = (๐1) โ + ๐(๐1) โ , (๐1) โ = 6๐ ฬ + 2๐ ฬ + 2๐ ฬ & (๐1) โ = 1๐ ฬ โ 2๐ ฬ + 2๐ ฬ ๐ โ = (โ4๐ ฬ โ ๐ ฬ) + ๐ (3๐ ฬ โ 2๐ ฬ โ 2๐ ฬ) Comparing with ๐ โ = (๐2) โ + ๐(๐2) โ , (๐2) โ = โ 4๐ ฬ + 0๐ ฬ โ 1๐ ฬ & (๐2) โ = 3๐ ฬ โ 2๐ ฬ โ 2๐ ฬ Now, ((๐๐) โ โ (๐๐) โ) = (โ4๐ ฬ + 0๐ ฬ โ 1๐ ฬ) โ (6๐ ฬ + 2๐ ฬ + 2๐ ฬ) = (โ4 โ 6) ๐ ฬ + (0 โ 2)๐ ฬ + (โ1 โ 2) ๐ ฬ = โ 10๐ ฬ โ 2๐ ฬ โ 3๐ ฬ ((๐๐) โ ร (๐๐) โ) = |โ 8(๐ ฬ&๐ ฬ&๐ ฬ@1& โ2&2@3&โ2&โ2)| = ๐ ฬ [(โ2รโ2)โ(โ2ร2)] โ ๐ ฬ [(1รโ2)โ(3ร2)] + ๐ ฬ [(1รโ2)โ(3รโ2)] = ๐ ฬ [ 4+4] โ ๐ ฬ [โ2โ6] + ๐ ฬ [โ2+6] = ๐ ฬ (8) โ ๐ ฬ (โ8) + ๐ ฬ(4) = 8๐ ฬ + 8๐ ฬ + 4๐ ฬ Magnitude of (๐1) โ ร (๐2) โ = โ(8^2+8^2+4^2 ) |(๐๐) โ ร (๐๐) โ | = โ(64+64+16) = โ144 = ๐๐ Also, ((๐๐) โร(๐๐) โ ) . ((๐๐) โ โ (๐๐) โ ) = (8๐ ฬ + 8๐ ฬ + 4๐ ฬ).(โ 10๐ ฬ โ 2๐ ฬ โ 3๐ ฬ) = (8 ร โ 10) + (8 ร โ 2) + (4 ร โ 3) = โ 80 + (โ16) + (-12) = โ 108 Shortest distance = |(((๐1) โ ร (๐2) โ ) . ((๐2) โ โ (๐1) โ ))/|(๐1) โ ร (๐2) โ | | = |( โ๐๐๐)/๐๐| = |โ9| = 9 Therefore, the shortest distance between the given two lines is 9.
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important You are here
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo