Check sibling questions


Transcript

Question 3 If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (โ€“ 4, 3, โ€“ 6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.Angle between a pair of lines having direction ratios ๐‘Ž1, ๐‘1, c1 and ๐‘Ž_2 , ๐‘_2, ๐‘_2 is given by cos ฮธ = |(๐’‚_๐Ÿ ๐’‚_๐Ÿ + ๐’ƒ_๐Ÿ ๐’ƒ_๐Ÿ + ๐’„๐Ÿ๐’„๐Ÿ)/(โˆš(ใ€–๐’‚_๐Ÿใ€—^๐Ÿ + ใ€–๐’ƒ_๐Ÿใ€—^๐Ÿ+ใ€– ๐’„_๐Ÿใ€—^๐Ÿ ) โˆš(ใ€–๐’‚_๐Ÿใ€—^๐Ÿ + ใ€–๐’ƒ_๐Ÿใ€—^๐Ÿ+ใ€– ๐’„_๐Ÿใ€—^๐Ÿ ))| A line passing through A (๐‘ฅ_1, ๐‘ฆ_1, ๐‘ง_1) and B (๐‘ฅ_2, ๐‘ฆ_2, ๐‘ง_2) has direction ratios (๐‘ฅ_2 โˆ’ ๐‘ฅ_1), (๐‘ฆ_2 โˆ’ ๐‘ฆ_1), (๐‘ง_2 โˆ’ ๐‘ง_1) AB A (1, 2, 3) , B (4, 5, 7) Direction ratios of AB (4 โˆ’ 1), (5 โˆ’ 2),(7 โˆ’ 3) = 3, 3, 4 โˆด ๐’‚1 = 3, ๐’ƒ1 = 3, ๐’„1 = 4 CD C (โˆ’4, 3, โˆ’6) ,D (2, 9, 2) Direction ratios of CD (2 โˆ’ (โ€“4)), (9 โˆ’ 3),(2 โ€“ (โ€“6)) = 6, 6, 8 โˆด ๐’‚2 = 6, ๐’ƒ2 = 6, ๐’„2 = 8 Now, cos ฮธ = |(๐‘Ž_1 ๐‘Ž_2 + ๐‘_1 ๐‘_2 + ๐‘1๐‘2)/(โˆš(ใ€–๐‘Ž_1ใ€—^2 + ใ€–๐‘_1ใ€—^2+ใ€– ๐‘_1ใ€—^2 ) โˆš(ใ€–๐‘Ž_2ใ€—^2 + ใ€–๐‘_2ใ€—^2+ใ€– ๐‘_2ใ€—^2 ))| cos ฮธ = |(3 ร— 6 + 3 ร— 6 + 4 ร— 8 )/(โˆš(32 + 32 + 42) โˆš(62 + 62 + 82))| = |(18 + 18 + 32 )/(โˆš(9 + 9 + 16) โˆš(36 + 36 + 64))| = |68/(โˆš34 โˆš136)| = |68/(โˆš34 โˆš(4 ร— 34))| = |68/(โˆš34 ร— โˆš4 ร— โˆš34)| = |68/(โˆš34 ร— โˆš34ร— โˆš4)| = |68/(34 ร— 2 )| = |68/68| = 1 โˆด cos ฮธ = 1 So, ฮธ = 0ยฐ Therefore, angle between AB and CD is 0ยฐ .

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo